题目内容

11.已知命题P:至少存在一个实数x0∈[2,4],使不等式x2-ax+2>0成立.若P为真,则参数 a 的取值范围为(  )
A.(-∞,3)B.$(-∞,2\sqrt{2})$C.(-∞,$\frac{11}{3}$)D.(-∞,$\frac{9}{2}$)

分析 求出¬p成立时,?x∈[2,4],都有a≥x+$\frac{2}{x}$恒成立,从而求出p为真时,a的范围即可.

解答 解:命题P:至少存在一个实数x0∈[2,4],使不等式x2-ax+2>0成立,
则¬p:?x∈[2,4],都有x2-ax+2≤0成立,
即?x∈[2,4],都有a≥x+$\frac{2}{x}$恒成立,
令f(x)=x+$\frac{2}{x}$,x∈[2,4],
则f′(x)=1-$\frac{2}{{x}^{2}}$=$\frac{{x}^{2}-2}{{x}^{2}}$>0,
故f(x)在[2,4]递增,
f(x)max=f(4)=4+$\frac{1}{2}$=$\frac{9}{2}$,
故a≥$\frac{9}{2}$,
即¬p成立时,a≥$\frac{9}{2}$,
故p为真时,a<$\frac{9}{2}$,
故选:D.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查命题的否定,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网