题目内容
8.为了得到函数f(x)=sin(3x+$\frac{π}{4}$)的图象,只需将函数g(x)=sin3x的图象( )| A. | 向右平移$\frac{π}{4}$个单位 | B. | 向左平移$\frac{π}{4}$个单位 | ||
| C. | 向右平移$\frac{π}{12}$个单位 | D. | 向左平移$\frac{π}{12}$个单位 |
分析 利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.
解答 解:由于:$y=sin(3x+\frac{π}{4})$=sin[3(x+$\frac{π}{12}$)],
可得:将函数y=sin3x的图象向左平行移动$\frac{π}{12}$个单位,可得函数$y=sin(3x+\frac{π}{4})$的图象,
故选:D.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
18.已知M=x2-3x+7,N=-x2+x+1,则( )
| A. | M<N | B. | M>N | ||
| C. | M=N | D. | M,N的大小与x的取值有关 |
19.已知命题p:?x∈R,x2+2x-a>0.若p为真命题,则实数a的取值范围是( )
| A. | a>-1 | B. | a<-1 | C. | a≥-1 | D. | a≤-1 |
16.$cos(-\frac{19π}{6})$的值为.( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
13.已知函数f(x)(x∈R)满足f(x+π)=f(x)+cosx,当0≤x<π时,f(x)=-1,则f($\frac{2017π}{3}$)=( )
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | -1 |
20.某地农业监测部门统计发现:该地区近几年的生猪收购价格每四个月会重复出现,但生猪养殖成本逐月递增.下表是今年前四个月的统计情况:
现打算从以下两个函数模型:
①y=Asin(ωx+φ)+B,(A>0,ω>0,-π<φ<π),
②y=log2(x+a)+b
中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.
(1)请你选择适当的函数模型,分别求出这两个函数解析式;
(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在8月和9月有没有可能亏损?
| 月份 | 1月份 | 2月份 | 3月份 | 4月份 |
| 收购价格(元/斤) | 6 | 7 | 6 | 5 |
| 养殖成本(元/斤) | 3 | 4 | 4.6 | 5 |
①y=Asin(ωx+φ)+B,(A>0,ω>0,-π<φ<π),
②y=log2(x+a)+b
中选择适当的函数模型,分别来拟合今年生猪收购价格(元/斤)与相应月份之间的函数关系、养殖成本(元/斤)与相应月份之间的函数关系.
(1)请你选择适当的函数模型,分别求出这两个函数解析式;
(2)按照你选定的函数模型,帮助该部门分析一下,今年该地区生猪养殖户在8月和9月有没有可能亏损?
17.过点P(2,-1)且倾斜角为$\frac{π}{4}$的直线方程是( )
| A. | x-y+1=0 | B. | $\sqrt{2}$x-2y-$\sqrt{2}$-2=0 | C. | x-y-3=0 | D. | $\sqrt{2}$x-2y+$\sqrt{2}$+1=0 |