题目内容
已知各项不为0的等差数列{an}满足a4-2a
+3a8=0,数列{bn}是等比数列,且b7=a7,则b2b12等于( )
A.1 B.2
C.4 D.8
C
[解析] ∵a4-2a
+3a8=0,∴2a
=a4+3a8=a7-3d+3(a7+d)=4a7,∴a7=2,∴b7=2.
∴b2b12=b
=4,故选C.
练习册系列答案
相关题目
题目内容
已知各项不为0的等差数列{an}满足a4-2a
+3a8=0,数列{bn}是等比数列,且b7=a7,则b2b12等于( )
A.1 B.2
C.4 D.8
C
[解析] ∵a4-2a
+3a8=0,∴2a
=a4+3a8=a7-3d+3(a7+d)=4a7,∴a7=2,∴b7=2.
∴b2b12=b
=4,故选C.