题目内容
5.设F1、F2分别为双曲线$C:{x^2}-\frac{y^2}{24}=1$的左、右焦点,P为双曲线C在第一象限上的一点,若$\frac{{|P{F_1}|}}{{|P{F_2}|}}=\frac{4}{3}$,则△PF1F2内切圆的面积为4π.分析 求得双曲线的a,b,c,运用双曲线的定义,结合条件可得|PF1|=8,|PF2|=6.可得△PF1F2为直角三角形,设内切圆的半径为r,运用面积相等,解方程可得r=2,即可得到所求面积.
解答 解:双曲线$C:{x^2}-\frac{y^2}{24}=1$的a=1,b=2$\sqrt{6}$,
c=$\sqrt{{a}^{2}+{b}^{2}}$=5,
由双曲线的定义可得|PF1|-|PF2|=2a=2,
又$\frac{{|P{F_1}|}}{{|P{F_2}|}}=\frac{4}{3}$,
解得|PF1|=8,|PF2|=6.
|F1F2|=2c=10,
即有82+62=102,
可得△PF1F2为直角三角形,
设内切圆的半径为r,可得
$\frac{1}{2}$r(|PF1|+|PF2|+|F1F2|)=$\frac{1}{2}$|PF1|•|PF2|,
即有r(8+6+10)=8×6,
解得r=2,
可得内切圆的面积为4π.
故答案为:4π.
点评 本题考查三角形的内切圆的面积,注意运用等积法,判断△PF1F2为直角三角形是解题的关键,同时考查双曲线的定义,属于中档题.
练习册系列答案
相关题目
5.实数x,y满足$\frac{|x|}{9}$+$\frac{|y|}{4}$≤1,则z=2x-y的最小值为( )
| A. | -18 | B. | -4 | C. | 4 | D. | -2$\sqrt{10}$ |
13.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两条渐近线分别l1,l2,右焦点F.若点F关于直线l1的对称点M在l2上则双曲线的离心率为( )
| A. | 3 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
20.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程与圆(x-$\sqrt{3}$)2+(y-1)2=1相切,则此双曲线的离心率为( )
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{6}}{6}$x,则此双曲线的离心率为( )
| A. | $\frac{\sqrt{42}}{6}$ | B. | $\frac{7}{6}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\frac{5}{4}$ |