题目内容
7.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+5≥0\\ x≤2\\ x+y≥0\end{array}\right.$,则z=x+2y的最小值为( )| A. | -3 | B. | $-\frac{5}{2}$ | C. | -2 | D. | $\frac{5}{2}$ |
分析 作出平面区域,求出角点的坐标,平移直线2x+y=0确定最小值.
解答
解:画出满足条件的平面区域,如图示:
,
由$\left\{\begin{array}{l}{x=2}\\{y=-x}\end{array}\right.$,解得A(2,-2),
由z=x+2y得:y=-$\frac{1}{2}$x+$\frac{z}{2}$,
结合图象得直线过A(2,-2)时,z最小,最小值是-2,
故选:C.
点评 本题主要考查线性规划中的最值问题,属于基础题.
练习册系列答案
相关题目
15.
如图是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}}$)图象的一部分,为了得到这个函数的图象,只要将y=sinx的图象上所有的点( )
| A. | 向左平移$\frac{π}{8}$个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 | |
| B. | 向右平移$\frac{π}{8}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变 | |
| C. | 向左平移$\frac{π}{4}$个单位长度,再把所得各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变 | |
| D. | 向右平移$\frac{π}{4}$个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 |
12.已知全集U=R,集合A={x|y=log2(x-1)},B={y|y=2x},则B∩(∁UA)为( )
| A. | (0,+∞) | B. | [1,+∞) | C. | (0,1] | D. | (1,2) |