ÌâÄ¿ÄÚÈÝ
1£®ÒÑÖªÅ×ÎïÏߦ££ºy2=2px£¨p£¾0£©µÄ×¼Ïß¹ýÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö½¹µã£¬Å×ÎïÏßÓëÍÖÔ²µÄÒ»¸ö½»µãPµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬Ö±Ïßl1£ºy=x+$\frac{{b}^{2}}{3}$ÓëÅ×ÎïÏß½öÓÐÒ»¸ö½»µã£®£¨1£©ÇóÅ×ÎïÏߦ£µÄ·½³ÌÒÔ¼°ÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÒÑÖª¹ýÔµãOÇÒбÂÊΪk£¨k£¾0£©µÄÖ±Ïßl2ÓëÅ×ÎïÏߦ£½»ÓÚO¡¢AÁ½²»Í¬µã£¬ÓëÍÖÔ²½»ÓÚB¡¢CÁ½²»Í¬µã£¬ÆäÖÐB¡¢CÁ½µãµÄ×Ý×ø±ê·Ö±ðÂú×ãyB£¼0£¬yC£¾0£¬Èô$\overrightarrow{BO}$=$\overrightarrow{CA}$£¬ÇóÖ±Ïßl2µÄ·½³Ì£®
·ÖÎö £¨1£©ÇóµÃÅ×ÎïÏßµÄ×¼Ïß·½³Ì£¬ÓÉÌâÒâ¿ÉµÃp=2c£¬ÔÙÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃa=2£¬ÁªÁ¢Ö±ÏߺÍÅ×ÎïÏß·½³Ì£¬ÔËÓÃÅбðʽΪ0£¬¿ÉµÃp£¬bµÄ·½³Ì£¬½â·½³Ì×飬¿ÉµÃa=2£¬p=2£¬b=$\sqrt{3}$£¬c=1£¬½ø¶øµÃµ½Å×ÎïÏߺÍÍÖÔ²·½³Ì£»
£¨2£©Éè³öÖ±Ïß·½³Ì£¬ÁªÁ¢Å×ÎïÏߺÍÍÖÔ²·½³Ì£¬ÇóµÃ½»µãµÄ×ø±ê£¬ÔÙÓÉÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬½â·½³Ì¿ÉµÃk£¬½ø¶øµÃµ½ËùÇóÖ±Ïß·½³Ì£®
½â´ð ½â£º£¨1£©y2=2px£¨p£¾0£©µÄ×¼ÏßΪx=-$\frac{p}{2}$£¬
ÓÉÌâÒâ¿ÉµÃ-$\frac{p}{2}$=-c£¬¢Ù
½»µãPµ½ÍÖÔ²Á½½¹µãµÄ¾àÀëÖ®ºÍΪ4£¬¼´Îª2a=4£¬
b2+c2=4£¬¢Ú
y=x+$\frac{{b}^{2}}{3}$ÓëÅ×ÎïÏßy2=2pxÁªÁ¢£¬¿ÉµÃ$\frac{1}{2p}$y2-y+$\frac{{b}^{2}}{3}$=0£¬
¼´ÓÐÅбðʽ1-$\frac{2{b}^{2}}{3p}$=0£¬¢Û
ÓÉ¢Ù¢Ú¢Û½âµÃp=2£¬b=$\sqrt{3}$£¬c=1£¬a=2£®
ÔòÅ×ÎïÏߦ£µÄ·½³ÌΪy2=4x£¬ÍÖÔ²EµÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÁªÁ¢Ö±Ïßl2£ºy=kxºÍÅ×ÎïÏß·½³Ìy2=4x£¬¿ÉµÃA£¨$\frac{4}{{k}^{2}}$£¬$\frac{4}{k}$£©£¬
ÁªÁ¢Ö±Ïßl2£ºy=kxºÍÍÖÔ²·½³Ì$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£¬
¿ÉµÃB£¨-$\sqrt{\frac{12}{3+4{k}^{2}}}$£¬-k•$\sqrt{\frac{12}{3+4{k}^{2}}}$£©£¬C£¨$\sqrt{\frac{12}{3+4{k}^{2}}}$£¬k•$\sqrt{\frac{12}{3+4{k}^{2}}}$£©£¬
ÓÉ$\overrightarrow{BO}$=$\overrightarrow{CA}$£¬¿ÉµÃ$\sqrt{\frac{12}{3+4{k}^{2}}}$=$\frac{4}{{k}^{2}}$-$\sqrt{\frac{12}{3+4{k}^{2}}}$£¬
½âµÃk=$\frac{\sqrt{6+3\sqrt{13}}}{3}$£¬
¼´ÓÐÖ±Ïßl2µÄ·½³ÌΪy=$\frac{\sqrt{6+3\sqrt{13}}}{3}$x£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²ºÍÅ×ÎïÏߵ͍Òå¡¢·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÍÖÔ²¡¢Å×ÎïÏßµÄλÖùØÏµ£¬¿¼²éÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬ÊôÓÚÖеµÌ⣮
| A£® | 45¡ã | B£® | 30¡ã | C£® | 90¡ã | D£® | 60¡ã |
| A£® | ¶ÔÈÎÒâµãM£¬´æÔÚµãNʹ½ØÃæEΪÈý½ÇÐÎ | |
| B£® | ¶ÔÈÎÒâµãM£¬´æÔÚµãNʹ½ØÃæEΪÕý·½ÐÎ | |
| C£® | ¶ÔÈÎÒâµãMºÍN£¬½ØÃæE¶¼ÊÇÌÝÐÎ | |
| D£® | ¶ÔÈÎÒâµãN£¬´æÔÚµãMʹµÃ½ØÃæEΪ¾ØÐÎ |