题目内容

已知函数f(x)=lnx-kx+1(k∈R).
(Ⅰ)若x轴是曲线f(x)=lnx-kx+1一条切线,求k的值;
(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:综合题,导数的综合应用
分析:(1)函数f(x)的定义域为(0,+∞),f′(x)=
1
x
-k=0,可得切点的坐标,进而可求k的值;
(2)确定函数的单调区间,k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1-k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为f(
1
k
),由此能确定实数k的取值范围.
解答: 解:(1)函数f(x)的定义域为(0,+∞),f′(x)=
1
x
-k=0,
∴x=
1
k

由ln
1
k
-1+1=0,可得k=1;
(2)当k≤0时,f′(x)=
1
x
-k>0,f(x)在(0,+∞)上是增函数;
当k>0时,若x∈(0,
1
k
)时,有f′(x)>0,若x∈(
1
k
,+∞)时,有f′(x)<0,
则f(x)在(0,
1
k
)上是增函数,在(
1
k
,+∞)上是减函数.
k≤0时,f(x)在(0,+∞)上是增函数,
而f(1)=1-k>0,f(x)≤0不成立,故k>0,
∵f(x)的最大值为f(
1
k
),要使f(x)≤0恒成立,
则f(
1
k
)≤0即可,即-lnk≤0,得k≥1.
点评:本题考查导数的几何意义,考查函数单调区间的求法,确定实数的取值范围,渗透了分类与整合的数学思想,培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网