题目内容
7.已知点P(cosθ,sin2θ)和点Q(0,1)是两个相异点,则P、Q两点连线所在直线的倾斜角的取值范围为( )| A. | [0,$\frac{π}{4}$] | B. | [0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π) | C. | [-$\frac{π}{4}$,$\frac{π}{4}$] | D. | [$\frac{π}{4}$,$\frac{3π}{4}$] |
分析 先求出P、Q两点连线所在直线斜率,由此能求出直线PQ的倾斜角的取值范围.
解答 解:∵点P(cosθ,sin2θ)和点Q(0,1)是两个相异点,
∴kPQ=$\frac{1-si{n}^{2}θ}{0-cosθ}$=-cosθ,
∵θ≠nπ+$\frac{π}{2}$,
∴直线AB斜率为在[-1,0)∪(0,1],
设倾斜角为α,则tanα∈[-1,0)∪(0,1],
∴α∈(0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).
故选:B.
点评 本题考查直线的倾斜角的取值范围的求法,是基础题,解题时要认真审题,注意斜率公式的合理运用.
练习册系列答案
相关题目
17.下列函数中,在其定义域内既是奇函数又是增函数的是( )
| A. | y=-x2+5(x∈R) | B. | y=kx.(x∈R,k∈R,k≠0) | ||
| C. | y=x3(x∈R) | D. | $y=-\frac{1}{x}(x∈R,x≠0)$ |
2.设f(x)=|1-x2|,若-1<a<0,b>1且f(a)=f(b),则$\frac{b}{a-1}$的取值范围( )
| A. | (-$\sqrt{2}$,-1) | B. | (-∞,-$\frac{1}{2}$) | C. | (-$\sqrt{2}$,-$\frac{1}{2}$) | D. | (-∞,-1) |
12.在区间(0,1)内任取一个数a,能使方程x2+2ax+$\frac{1}{2}$=0有两个不相等的实数根的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{2-\sqrt{2}}{2}$ |