题目内容

7.已知点P(cosθ,sin2θ)和点Q(0,1)是两个相异点,则P、Q两点连线所在直线的倾斜角的取值范围为(  )
A.[0,$\frac{π}{4}$]B.[0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π)C.[-$\frac{π}{4}$,$\frac{π}{4}$]D.[$\frac{π}{4}$,$\frac{3π}{4}$]

分析 先求出P、Q两点连线所在直线斜率,由此能求出直线PQ的倾斜角的取值范围.

解答 解:∵点P(cosθ,sin2θ)和点Q(0,1)是两个相异点,
∴kPQ=$\frac{1-si{n}^{2}θ}{0-cosθ}$=-cosθ,
∵θ≠nπ+$\frac{π}{2}$,
∴直线AB斜率为在[-1,0)∪(0,1],
设倾斜角为α,则tanα∈[-1,0)∪(0,1],
∴α∈(0,$\frac{π}{4}$]∪[$\frac{3π}{4}$,π).
故选:B.

点评 本题考查直线的倾斜角的取值范围的求法,是基础题,解题时要认真审题,注意斜率公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网