题目内容
设数列{an}的前n项和Sn满足
=3n-2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,Tn是数列{bn}的前n项和,求使得Tn<
对所有n∈N*都成立的最小正整数m.
| Sn |
| n |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 3 |
| anan+1 |
| m |
| 20 |
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件推导出Sn=3n2-2n,由此利用an=
能求出数列{an}的通项公式.
(Ⅱ)由an=6n-5,推导出bn=
=
(
-
),由此利用裂项求出和法求出Tn=
(1-
),再由
>0,能求出使得Tn<
对所有n∈N*都成立的最小正整数m.
|
(Ⅱ)由an=6n-5,推导出bn=
| 3 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
| 1 |
| 2 |
| 1 |
| 6n+1 |
| 1 |
| 6n+1 |
| m |
| 20 |
解答:
解:(Ⅰ)∵数列{an}的前n项和Sn满足
=3n-2,
∴Sn=3n2-2n,
∴a1=S1=3-2=1,
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]
=6n-5,
当n=1时,6n-5=1=a1,
∴an=6n-5.
(Ⅱ)∵an=6n-5,
∴bn=
=
=
(
-
),
∴Tn=
(1-
+
-
+…+
-
)
=
(1-
),
∵n∈N*,∴
>0,
∴Tn=
(1-
)<
,
又∵Tn<
对所有n∈N*都成立,
∴
≥
,解得m≥10.
∴使得Tn<
对所有n∈N*都成立的最小正整数m为10.
| Sn |
| n |
∴Sn=3n2-2n,
∴a1=S1=3-2=1,
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]
=6n-5,
当n=1时,6n-5=1=a1,
∴an=6n-5.
(Ⅱ)∵an=6n-5,
∴bn=
| 3 |
| anan+1 |
| 3 |
| (6n-5)(6n+1) |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 13 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
=
| 1 |
| 2 |
| 1 |
| 6n+1 |
∵n∈N*,∴
| 1 |
| 6n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 6n+1 |
| 1 |
| 2 |
又∵Tn<
| m |
| 20 |
∴
| m |
| 20 |
| 1 |
| 2 |
∴使得Tn<
| m |
| 20 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法及其应用,是中档题,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目