ÌâÄ¿ÄÚÈÝ
1£®¶¨Òå¡°º¯Êýy=f£¨x£©ÊÇDÉϵÄa¼¶ÀàÖÜÆÚº¯Êý¡±ÈçÏ£ºº¯Êýy=f£¨x£©£¬x¡ÊD£¬¶ÔÓÚ¸ø¶¨µÄ·ÇÁã³£Êý a£¬×Ü´æÔÚ·ÇÁã³£ÊýT£¬Ê¹µÃ¶¨ÒåÓòDÄÚµÄÈÎÒâʵÊýx¶¼ÓÐaf£¨x£©=f£¨x+T£©ºã³ÉÁ¢£¬´ËʱTΪf£¨x£©µÄÖÜÆÚ£®Èôy=f£¨x£©ÊÇ[1£¬+¡Þ£©ÉϵÄa¼¶ÀàÖÜÆÚº¯Êý£¬ÇÒT=1£¬µ±x¡Ê[1£¬2£©Ê±£¬f£¨x£©=2x+1£¬ÇÒy=f£¨x£©ÊÇ[1£¬+¡Þ£©Éϵĵ¥µ÷µÝÔöº¯Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©| A£® | $[{\frac{5}{6}£¬+¡Þ}£©$ | B£® | [2£¬+¡Þ£© | C£® | $[{\frac{5}{3}£¬+¡Þ}£©$ | D£® | [10£¬+¡Þ£© |
·ÖÎö ÀûÓú¯Êýa¼¶ÀàÖÜÆÚµÄ¶¨ÒåÒÀ´Î¼ÆËãf£¨x£©ÔÚ¸÷¸öÇø¼äÉϵĽâÎöʽ£¬¹éÄÉf£¨x£©ÔÚ[n£¬n+1£©ÉϵĽâÎöʽ£¬ÀûÓú¯ÊýµÄµ¥µ÷ÐÔÁгö²»µÈʽ¼´¿ÉµÃ³öaµÄ·¶Î§£®
½â´ð ½â£º¡ßx¡Ê[1£¬2£©Ê±£¬f£¨x£©=2x+1£¬
¡àµ±x¡Ê[2£¬3£©Ê±£¬f£¨x£©=af£¨x-1£©=a•[2£¨x-1£©+1]£¬
¡
µ±x¡Ê[n£¬n+1£©Ê±£¬f£¨x£©=af£¨x-1£©=a2f£¨x-2£©=¡=an-1f£¨x-n+1£©=an-1•[2£¨x-n+1£©+1]£®
¼´x¡Ê[n£¬n+1£©Ê±£¬f£¨x£©=an-1•[2£¨x-n+1£©+1]£¬n¡ÊN*£¬
¡àµ±x¡Ê[n-1£¬n£©Ê±£¬f£¨x£©=an-2•[2£¨x-n+1+1£©+1]=an-2•[2£¨x-n+2£©+1]£¬
¡ßf£¨x£©ÔÚ[1£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬
¡àan-2•5¡Üan-1•3ºã³ÉÁ¢£¬
¡àa¡Ý$\frac{5}{3}$£®
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²éÁ˺¯Êý½âÎöʽµÄÇó½â£¬·Ö¶Îº¯Êýµ¥µ÷ÐÔµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®¡¶¾ÅÕÂËãÊõ¡·É̹¦ÕÂÓÐÔÆ£º½ñÓÐÔ²À§£¬¸ßÒ»ÕÉÈý³ßÈý´ç¡¢ÉÙ°ë´ç£¬ÈÝÃ×¶þǧõú£¬ÎÊÖܼ¸ºÎ£¿¼´Ò»Ô²ÖùÐιȲ֣¬¸ß1ÕÉ3³ß$3\frac{1}{3}$´ç£¬ÈÝÄÉÃ×2000õú£¨1ÕÉ=10³ß£¬1³ß=10´ç£¬õúΪÈÝ»ýµ¥Î»£¬1õú¡Ö1.62Á¢·½³ß£¬¦Ð¡Ö3£©£¬ÔòÔ²Öùµ×ÃæÔ²µÄÖܳ¤Ô¼Îª£¨¡¡¡¡£©
| A£® | 1ÕÉ3³ß | B£® | 5ÕÉ4³ß | C£® | 9ÕÉ2³ß | D£® | 48 |
12£®ÔÚµÈÑüÈý½ÇÐÎABCÖУ¬¡ÏA=150¡ã£¬AC=AB=1£¬Ôò$\overrightarrow{AB}•\overrightarrow{BC}$=£¨¡¡¡¡£©
| A£® | $-\frac{{\sqrt{3}}}{2}-1$ | B£® | $-\frac{{\sqrt{3}}}{2}+1$ | C£® | $\frac{{\sqrt{3}}}{2}-1$ | D£® | $\frac{{\sqrt{3}}}{2}+1$ |