题目内容

14.已知定义在R上的函数f(x)满足$f(x)=\left\{\begin{array}{l}{log_2}(1-x),x≤0\\ f(x-6),x>0\end{array}\right.$则f(2019)=(  )
A.-1B.0C.1D.2

分析 推导出f(2019)=f(336×6+3)=f(3)=f(-3)=log24,由此能求出f(2019).

解答 解:∵定义在R上的函数f(x)满足$f(x)=\left\{\begin{array}{l}{log_2}(1-x),x≤0\\ f(x-6),x>0\end{array}\right.$,
∴f(2019)=f(336×6+3)=f(3)=f(-3)=log24=2.
故选:D.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网