题目内容
5.从1,2,3,4,5五个数字中任意取出两个不同的数做加法,其和为6的概率是$\frac{1}{5}$.分析 先求出基本事件总数n=${C}_{5}^{2}=10$,再用列举法求出其和为6包含的基本事件个数,由此能求出其和为6的概率.
解答 解:从1,2,3,4,5五个数字中任意取出两个不同的数做加法,
基本事件总数n=${C}_{5}^{2}=10$,
其和为6包含的基本事件有:(1,5),(2,4),共有2个,
∴其和为6的概率是p=$\frac{2}{10}=\frac{1}{5}$.
故答案为:$\frac{1}{5}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
16.设p:x2-x-20≤0,q:$\frac{9}{x+4}$≥1,则p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
13.设函数f(x)=|x+1|-|x-a|(a∈R)
(Ⅰ)当a=l时,求不等式f(x)≤1的解集
(Ⅱ)对任意m∈R*,x∈R不等式f(x)≤m+$\frac{4}{m}$恒成立,求实数a的取值范围.
(Ⅰ)当a=l时,求不等式f(x)≤1的解集
(Ⅱ)对任意m∈R*,x∈R不等式f(x)≤m+$\frac{4}{m}$恒成立,求实数a的取值范围.
20.一批产品的合格率为90%,检验员抽检时出错率为10%,则检验员抽取一件产品,检验为合格品的概率是( )
| A. | 0.81 | B. | 0.82 | C. | 0.90 | D. | 0.91 |
17.在复平面内,复数Z=$\frac{3-i}{1-i}$对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
14.已知定义在R上的函数f(x)满足$f(x)=\left\{\begin{array}{l}{log_2}(1-x),x≤0\\ f(x-6),x>0\end{array}\right.$则f(2019)=( )
| A. | -1 | B. | 0 | C. | 1 | D. | 2 |
11.设a=$lo{g}_{\frac{1}{3}}2,b=lo{g}_{3}4,c=lo{g}_{3}2$,则a,b,c的大小关系是( )
| A. | a<b<c | B. | b<a<c | C. | b<c<a | D. | a<c<b |