题目内容
已知F1,F2分别是双曲线
-
=1的左、右焦点,以坐标原点O为圆心,|OF1|为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于16时,双曲线的离心率为( )
| x2 |
| 16 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
| D、2 |
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:先设F1F2=2c,由题意知△F1F2P是直角三角形,进而在RT△PF1F2中结合双曲线的定义和△PF1F2的面积,进而根据双曲线的简单性质求得a,c之间的关系,则双曲线的离心率可得.
解答:
解:双曲线
-
=1的a2=16,
设F1F2=2c,由题意知△F1F2P是直角三角形,
∴F1P2+F2P2=F1F22,
又根据曲线的定义得:
F1P-F2P=2a,
平方得:F1P2+F2P2-2F1P×F2P=4a2
从而得出F1F22-2F1P×F2P=4a2
∴F1P×F2P=2(c2-a2)
又当△PF1F2的面积等于16=a2
即
F1P×F2P=a2
2(c2-a2)=a2
∴c=
a,
∴双曲线的离心率e=
=
.
故选A.
| x2 |
| 16 |
| y2 |
| b2 |
设F1F2=2c,由题意知△F1F2P是直角三角形,
∴F1P2+F2P2=F1F22,
又根据曲线的定义得:
F1P-F2P=2a,
平方得:F1P2+F2P2-2F1P×F2P=4a2
从而得出F1F22-2F1P×F2P=4a2
∴F1P×F2P=2(c2-a2)
又当△PF1F2的面积等于16=a2
即
| 1 |
| 2 |
2(c2-a2)=a2
∴c=
| 2 |
∴双曲线的离心率e=
| c |
| a |
| 2 |
故选A.
点评:题主要考查了双曲线的简单性质.考查了学生综合分析问题和数形结合的思想的运用.属基础题.
练习册系列答案
相关题目