题目内容

19.已知△ABC的外接圆的圆心为O,半径为1,$2\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,且|$\overrightarrow{AO}$|=|$\overrightarrow{AB}$|,则$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影为(  )
A.$\frac{1}{2}$B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{3}{2}$

分析 由题意可得BC为圆O的直径,画出图形,求出AC长度及$\overrightarrow{CA}$与$\overrightarrow{CB}$的夹角,代入投影公式求解.

解答 解:∵$2\overrightarrow{AO}$=$\overrightarrow{AB}$+$\overrightarrow{AC}$,
∴$\overrightarrow{OA}+\overrightarrow{AB}+\overrightarrow{OA}+\overrightarrow{AC}=\overrightarrow{0}$,得$\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$,
则BC为圆O的直径,如图:

∵|$\overrightarrow{AO}$|=|$\overrightarrow{AB}$|,∴△OAB的等边三角形,
则OA=OB=AB=1,AC=$\sqrt{3}$,BC=2,
∴$\overrightarrow{CA}$与$\overrightarrow{CB}$夹角是30°,
∴向量$\overrightarrow{CA}$在$\overrightarrow{CB}$方向上的投影是|$\overrightarrow{CA}$|cos30°=$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=$\frac{3}{2}$.
故选:D.

点评 本题考查平面向量的数量积运算,考查向量在向量方向上投影的概念,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网