题目内容
已知f(x)=
,
(1)计算f(x)+f(1-x)= ;
(2)若{an}满足an=f(
),则S1000= ;
(3)f(
)+f(
)+f(
)+…+f(
)= ;
(4)一般情况下,若Sn=f(
)+f(
)+f(
)+…+f(
),则Sn= .
| 4x |
| 4x+2 |
(1)计算f(x)+f(1-x)=
(2)若{an}满足an=f(
| n |
| 1001 |
(3)f(
| 1 |
| 1000 |
| 2 |
| 1000 |
| 3 |
| 1000 |
| 999 |
| 1000 |
(4)一般情况下,若Sn=f(
| 1 |
| n+1 |
| 2 |
| n+1 |
| 3 |
| n+1 |
| n |
| n+1 |
考点:函数的值
专题:函数的性质及应用
分析:根据条件,先计算f(x)+f(1-x)是常数,然后按照条件分别进行计算即可得到结论.
解答:
解:(1)∵f(x)=
,
∴f(x)+f(1-x)
+
=
+
=
+
=
=1;
(2)若{an}满足an=f(
),则S1000=f(
)+f(
)+…+f(
)+f(
)=500×[f(
)+f(
)=500;
(3)f(
)+f(
)+f(
)+…+f(
)=499×[f(
)+f(
)]+f(
)=499+f(
)=499+
=499+
=
+499=499
;
(4)若n是偶数,则Sn=f(
)+f(
)+f(
)+…+f(
)=
[f(
)+f(
)]=
,
若n是奇数,则Sn=f(
)+f(
)+f(
)+…+f(
)=
[f(
)+f(
)]+f(
)=
+
=
,
综上Sn=
.
故答案为:(1)1,(2)500,(3)499
(4)
| 4x |
| 4x+2 |
∴f(x)+f(1-x)
| 4x |
| 4x+2 |
| 41-x |
| 41-x+2 |
| 4x |
| 4x+2 |
| 4 |
| 4+2•4x |
| 4x |
| 4x+2 |
| 2 |
| 2+4x |
| 2+4x |
| 2+4x |
(2)若{an}满足an=f(
| n |
| 1001 |
| 1 |
| 1001 |
| 2 |
| 1001 |
| 999 |
| 1001 |
| 1000 |
| 1001 |
| 1 |
| 1001 |
| 1000 |
| 1001 |
(3)f(
| 1 |
| 1000 |
| 2 |
| 1000 |
| 3 |
| 1000 |
| 999 |
| 1000 |
| 1 |
| 1000 |
| 999 |
| 1000 |
| 500 |
| 1000 |
| 1 |
| 2 |
| ||
|
| 2 |
| 2+2 |
| 1 |
| 2 |
| 1 |
| 2 |
(4)若n是偶数,则Sn=f(
| 1 |
| n+1 |
| 2 |
| n+1 |
| 3 |
| n+1 |
| n |
| n+1 |
| n |
| 2 |
| 1 |
| n+1 |
| n |
| n+1 |
| n |
| 2 |
若n是奇数,则Sn=f(
| 1 |
| n+1 |
| 2 |
| n+1 |
| 3 |
| n+1 |
| n |
| n+1 |
| n-1 |
| 2 |
| 1 |
| n+1 |
| n |
| n+1 |
| 1 |
| 2 |
| n-1 |
| 2 |
| 1 |
| 2 |
| n |
| 2 |
综上Sn=
| n |
| 2 |
故答案为:(1)1,(2)500,(3)499
| 1 |
| 2 |
| n |
| 2 |
点评:本题主要考查函数值的计算,根据指数函数的运算法则计算出f(x)+f(1-x)=1是解决本题的关键.
练习册系列答案
相关题目
已知向量
、
满足|
|=1,|
+
|=3,则|
|的取值范围为( )
| a |
| b |
| a |
| a |
| b |
| b |
| A、[1,2] |
| B、[0,4] |
| C、[1,3] |
| D、[2,4] |
若集合A={1,m,4},B={3,4},则“m=2”是“A∩B={4}”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |