题目内容
在△ABC中,A=60°,AB=1,AC=2,则S△ABC的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、2
|
考点:正弦定理
专题:解三角形
分析:直接用三角形面积公式求得答案.
解答:
解:S△ABC=
•AB•AC•sinA=
×1×2×
=
,
故选B.
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
故选B.
点评:本题主要考查正弦定理的应用.属基础题.
练习册系列答案
相关题目
定义区间(m,n),[m,n],[m,n),(m,n]的长度均为n-m,其中n>m,已知关于实数x的不等式组
的解集构成的各区间长度之和为4,则实数t的取值范围是( )
|
A、(0,
| ||
B、(0,
| ||
C、(0,
| ||
D、(0,
|
在区间(0,+∞)上递增的函数是( )
A、y=(
| ||
| B、y=log2x | ||
C、y=log
| ||
| D、y=x-1. |
函数y=
在(0,+∞)上( )
| 1 |
| x |
| A、既无最大值又无最小值 |
| B、仅有最小值 |
| C、既有最大值又有最小值 |
| D、仅有最大值 |
已知等差数列{an}的前n项和为Sn,且a1+a5=
a3,a9=10,则S11=( )
| 3 |
| 2 |
| A、60 | B、96 | C、70 | D、55 |
已知函数f(x)是偶函数,其图象与x轴有四个不同的交点,则函数f(x-1)的所有零点之和为( )
| A、0 | B、8 | C、4 | D、无法确定 |
若k,2,b三个数成等差数列,则直线y=kx+b必经过定点( )
| A、(-1,-4) |
| B、(1,3) |
| C、(1,2) |
| D、(1,4) |
设函数f(x)=ln(1+x)-x,记a=f(1),b=f(
),c=f(
),则( )
| 3 |
| 7 |
| A、b<a<c |
| B、c<b<a |
| C、a<b<c |
| D、a<c<b |
定义在R上的奇函数f(x)满足f(x+4)=f(x),且在[0,1]上单调递增,下列关系式正确的是( )
| A、0<f(3)<f(1) |
| B、0<f(1)<f(3) |
| C、f(3)<0<f(1) |
| D、f(1)<0<f(3) |