题目内容
19.现有1000根某品种的棉花纤维,从中随机抽取50根,纤维长度(单位:mm)的数据分组及各组的频数如表,据此估计这1000根中纤维长度不小于37.5mm的根数是180.| 纤维长度 | 频数 |
| [22.5,25.5) | 3 |
| [25.5,28.5) | 8 |
| [28.5,31.5) | 9 |
| [31.5,34.5) | 11 |
| [34.5,37.5) | 10 |
| [37.5,40.5) | 5 |
| [40.5,43.5] | 4 |
分析 由频率分布表先求出纤维长度不小于37.5mm的频率,由此能估计这1000根中纤维长度不小于37.5mm的根数.
解答 解:由频率分布表知:
纤维长度不小于37.5mm的频率为:$\frac{5+4}{50}$=0.18,
∴估计这1000根中纤维长度不小于37.5mm的根数是1000×0.18=180.
故答案为:180.
点评 本题考查频数分布表的应用,是基础题,解题时要认真审题,注意公式:频率=$\frac{频数}{总数}$的合理运用.
练习册系列答案
相关题目
10.
某校在一次高三年级“诊断性”测试后,对该年级的500名考生的成绩进行统计分析,成绩的频率分布表及频率分布直方图如图所示,规定成绩不小于130分为优秀.
(1)若用分层抽样的方法从这500人中抽取5人的成绩进行分析,求其中成绩为优秀的学生人数;
(2)在(1)中抽取的5名学生中,要随机抽取2名学生参加分析座谈会,求恰有1人成绩为优秀的概率.
(1)若用分层抽样的方法从这500人中抽取5人的成绩进行分析,求其中成绩为优秀的学生人数;
(2)在(1)中抽取的5名学生中,要随机抽取2名学生参加分析座谈会,求恰有1人成绩为优秀的概率.
| 区间 | 人数 |
| [115,120) | 25 |
| [120,125) | a |
| [125,130) | 175 |
| [130,135) | 150 |
| [135,140) | b |
7.在等差数列{an}中,a1+a2=1,a2016+a2017=3,Sn是数列{an}的前n项和,则S2017=( )
| A. | 6051 | B. | 4034 | C. | 2017 | D. | 1009 |