题目内容
10.已知$\overrightarrow{AB}=(1,-1)$与垂直的单位向量的坐标是( )| A. | $(-\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2})$ | B. | $(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2})$ | C. | $(-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2})$ | D. | (-1,1) |
分析 根据题意,设要求向量的坐标为(m,n),则有$\left\{\begin{array}{l}{m×1+n×(-1)=0}\\{{m}^{2}+{n}^{2}=1}\end{array}\right.$,解可得m、n的值,即可得要求向量的坐标,分析选项即可得答案.
解答 解:根据题意,设要求向量的坐标为(m,n),
则有$\left\{\begin{array}{l}{m×1+n×(-1)=0}\\{{m}^{2}+{n}^{2}=1}\end{array}\right.$,
解可得$\left\{\begin{array}{l}{m=\frac{\sqrt{2}}{2}}\\{n=\frac{\sqrt{2}}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{m=-\frac{\sqrt{2}}{2}}\\{n=-\frac{\sqrt{2}}{2}}\end{array}\right.$,
即要求向量为($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)或(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$);
分析选项可得:A符合;
故选:A.
点评 本题考查向量垂直的判定方法以及单位向量的性质,注意单位向量的定义.
练习册系列答案
相关题目
20.已知点P为圆(x-2)2+y2=1上的点,直线l1为y=$\frac{\sqrt{2}}{2}$x,l2为y=-$\frac{\sqrt{2}}{2}$x,P到l1、l2的距离分别为d1、d2,那么d1d2的最小值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{9}$ | D. | $\frac{1}{6}$ |
1.已知点P(3,2)和圆的方程(x-2)2+(y-3)2=4,则它们的位置关系为( )
| A. | 在圆心 | B. | 在圆上 | C. | 在圆内 | D. | 在圆外 |
18.在2016宜昌马拉松10公里健康跑比赛中,张老师用手表记录了各公里的完成时间、平均心率及步数:
在这10公里的比赛过程,请依据上述数据,判断正确的一组序号是( )
(1)由每公里的平均心率得知张老师最高心率为188;
(2)张老师此次路跑,每步距离的平均小于1米;
(3)每公里完成时间和每公里平均心率的相关系数为正;
(4)每公里步数和每公里平均心率的相关系数为正;
(5)每公里完成时间和每公里步数的相关系数为负.
| 完成时间 | 平均心率 | 步数 | |
| 第一公里 | 5:00 | 161 | 990 |
| 第二公里 | 4:50 | 162 | 1000 |
| 第三公里 | 4:50 | 165 | 1005 |
| 第四公里 | 4:55 | 162 | 995 |
| 第五公里 | 4:40 | 171 | 1015 |
| 第六公里 | 4:41 | 170 | 1005 |
| 第七公里 | 4:35 | 173 | 1050 |
| 第八公里 | 4:35 | 181 | 1050 |
| 第九公里 | 4:40 | 171 | 1050 |
| 第十公里 | 4:34 | 188 | 1100 |
(1)由每公里的平均心率得知张老师最高心率为188;
(2)张老师此次路跑,每步距离的平均小于1米;
(3)每公里完成时间和每公里平均心率的相关系数为正;
(4)每公里步数和每公里平均心率的相关系数为正;
(5)每公里完成时间和每公里步数的相关系数为负.
| A. | (1)(2)(4) | B. | (2)(3)(4) | C. | (1)(2)(5) | D. | (2)(4)(5) |
5.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值范围是( )
| A. | 0<a<1 | B. | a=1 | C. | a≥1 | D. | a>1 |
19.下列函数既是奇函数又在(0,+∞)上为减函数的是( )
| A. | y=-tanx | B. | y=$\frac{{e}^{-x}-{e}^{x}}{2}$ | C. | y=ln$\frac{1-x}{1+x}$ | D. | y=-x2+1 |