题目内容
如图,正四面体ABCD的棱长为2,点E,F分别为棱BC,AD的中点,则
•
的值为( )
| EF |
| BA |
| A、4 | B、-4 | C、-2 | D、2 |
考点:空间向量的数量积运算
专题:空间向量及应用
分析:由于
=
+
+
=
+
+
,可得
•
=(
+
+
)•
=
•
-
2+
•
,即可得出.
| EF |
| EA |
| AB |
| BF |
| 1 |
| 2 |
| DA |
| AB |
| 1 |
| 2 |
| BC |
| EF |
| BA |
| 1 |
| 2 |
| DA |
| AB |
| 1 |
| 2 |
| BC |
| BA |
| 1 |
| 2 |
| AD |
| AB |
| AB |
| 1 |
| 2 |
| BC |
| BA |
解答:
解:∵
=
+
+
=
+
+
,
∴
•
=(
+
+
)•
=
•
-
2+
•
=
×22cos60°-22+
×22×cos60°
=-2.
故选:C.
| EF |
| EA |
| AB |
| BF |
| 1 |
| 2 |
| DA |
| AB |
| 1 |
| 2 |
| BC |
∴
| EF |
| BA |
| 1 |
| 2 |
| DA |
| AB |
| 1 |
| 2 |
| BC |
| BA |
| 1 |
| 2 |
| AD |
| AB |
| AB |
| 1 |
| 2 |
| BC |
| BA |
=
| 1 |
| 2 |
| 1 |
| 2 |
=-2.
故选:C.
点评:本题考查了向量的多边形法则、数量积运算、正四面体的性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
下列结论不正确的是( )
| A、sin2>0 |
| B、cos200°<0 |
| C、tan(-2)<0 |
| D、tan200°>0 |