ÌâÄ¿ÄÚÈÝ
8£®Õý12±ßÐÎA1A2¡A12ÄÚ½ÓÓڰ뾶Ϊ1µÄÔ²£¬´Ó$\overrightarrow{{A}_{1}{A}_{2}}$¡¢$\overrightarrow{{A}_{2}{A}_{3}}$¡¢$\overrightarrow{{A}_{3}{A}_{4}}$¡¢¡¡¢$\overrightarrow{{A}_{12}{A}_{1}}$Õâ12¸öÏòÁ¿ÖÐÈÎÈ¡Á½¸ö£¬¼ÇËüÃǵÄÊýÁ¿»ýΪS£¬ÔòSµÄ×î´óÖµµÈÓÚ$\sqrt{3}-\frac{3}{2}$£®·ÖÎö ÓÉÌâÒ⻳öͼÐΣ¬Çó³öÕý12±äÐεı߳¤£¬ÔÚÓÉÌâÒâ¿ÉµÃ£¬´Ó$\overrightarrow{{A}_{1}{A}_{2}}$¡¢$\overrightarrow{{A}_{2}{A}_{3}}$¡¢$\overrightarrow{{A}_{3}{A}_{4}}$¡¢¡¡¢$\overrightarrow{{A}_{12}{A}_{1}}$Õâ12¸öÏòÁ¿ÖÐÈÎÈ¡Á½¸ö£¬Ê¹ËüÃǵÄÊýÁ¿»ý×î´ó£¬ÔòÁ½ÏòÁ¿¼Ð½Ç×îС£¬ÔòÁ½ÏòÁ¿ÎªÏàÁÚÁ½ÏòÁ¿£¬Óɴ˿ɵô𰸣®
½â´ð ½â£ºÈçͼ£¬![]()
Óɶà±ßÐÎÄڽǺͶ¨Àí¿ÉÖª£¬Õý12±ßÐÎA1A2¡A12ÄڽǺÍΪ£¨12-10£©¡Á180¡ã=1800¡ã£¬
Ôòÿһ¸öÄÚ½ÇΪ$\frac{1800¡ã}{12}=150¡ã$£¬
¡ÏA1OA2=30¡ã£¬
ÔÚ¡÷A1OA2ÖУ¬ÓÖOA1=OA2=1£¬
ÓÉÓàÏÒ¶¨Àí¿ÉµÃ£º$|\overrightarrow{{A}_{1}{A}_{2}}{|}^{2}={1}^{2}+{1}^{2}-2¡Á1¡Á1¡Ácos30¡ã=2-\sqrt{3}$£¬
ÓÉÌâÒâ¿ÉÖª£¬$\overrightarrow{{A}_{1}{A}_{2}}$¡¢$\overrightarrow{{A}_{2}{A}_{3}}$¡¢$\overrightarrow{{A}_{3}{A}_{4}}$¡¢¡¡¢$\overrightarrow{{A}_{12}{A}_{1}}$µÄÄ£ÏàµÈ£¬
´Ó$\overrightarrow{{A}_{1}{A}_{2}}$¡¢$\overrightarrow{{A}_{2}{A}_{3}}$¡¢$\overrightarrow{{A}_{3}{A}_{4}}$¡¢¡¡¢$\overrightarrow{{A}_{12}{A}_{1}}$Õâ12¸öÏòÁ¿ÖÐÈÎÈ¡Á½¸ö£¬Ê¹ËüÃǵÄÊýÁ¿»ý×î´ó£¬
ÔòÁ½ÏòÁ¿¼Ð½Ç×îС£¬ÔòÁ½ÏòÁ¿ÎªÏàÁÚÁ½ÏòÁ¿£¬
²»·ÁÈ¡$\overrightarrow{{A}_{1}{A}_{2}}$¡¢$\overrightarrow{{A}_{2}{A}_{3}}$£¬
ÔòS=$\overrightarrow{{A}_{1}{A}_{2}}•\overrightarrow{{A}_{2}{A}_{3}}=|\overrightarrow{{A}_{1}{A}_{2}}{|}^{2}cos30¡ã$=$£¨2-\sqrt{3}£©¡Á\frac{\sqrt{3}}{2}=\sqrt{3}-\frac{3}{2}$£®
¹Ê´ð°¸Îª£º$\sqrt{3}-\frac{3}{2}$£®
µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²éÁËÊýÁ¿»ýµÄÇ󷨣¬»³öͼÐÎÇÒÕýÈ·Àí½âÌâÒâÊǽâ´ð¸ÃÌâµÄ¹Ø¼ü£¬ÊÇÖеµÌ⣮
| A£® | ³ä·Ö²»±ØÒªÌõ¼þ | B£® | ±ØÒª²»³ä·ÖÌõ¼þ | ||
| C£® | ³äÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | 83 | B£® | 63 | C£® | 57 | D£® | 23 |
| A£® | $\sqrt{11}$ | B£® | $\sqrt{10}$ | C£® | 3 | D£® | 2$\sqrt{2}$ |
| A£® | $10\sqrt{3}$º£Àï | B£® | $\frac{{10\sqrt{6}}}{3}$º£Àï | C£® | $5\sqrt{2}$ º£Àï | D£® | $5\sqrt{6}$º£Àï |