题目内容
17.已知函数f(x)=|x+6|-|m-x|(m∈R)(Ⅰ)当m=3时,求不等式f(x)≥5的解集;
(Ⅱ)若不等式f(x)≤7对任意实数x恒成立,求m的取值范围.
分析 (1)通过讨论x的范围,得到各个区间上的x的范围,取并集即可;(2)根据绝对值的几何意义求出m的范围即可.
解答 解:(1)当m=3时,f(x)≥5即|x+6|-|x-3|≥5,
①当x<-6时,得-9≥5,所以x∈ϕ;
②当-6≤x≤3时,得x+6+x-3≥5,即x≥1,所以1≤x≤3;
③当x>3时,得9≥5,成立,所以x>3;
故不等式f(x)≥5的解集为{x|x≥1}.
(Ⅱ)因为|x+6|-|m-x|≤|x+6+m-x|=|m+6|,
由题意得|m+6|≤7,
则-7≤m+6≤7,
解得-13≤m≤1.
点评 本题考查了解绝对值不等式问题,考查绝对值的几何意义,分类讨论思想,是一道中档题.
练习册系列答案
相关题目
5.若数列{an}满足${a_{n+1}}=2{a_n}({a_n}≠0,n∈{N^*})$,且a2与a4的等差中项是5,则a1+a2+…+an等于( )
| A. | 2n | B. | 2n-1 | C. | 2n-1 | D. | 2n-1-1 |
6.要得到函数f (x)=sin2x的导函数 f′(x)的图象,只需将f (x)的图象( )
| A. | 向左平移$\frac{π}{2}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) | |
| B. | 向左平移$\frac{π}{2}$个单位,再把各点的纵坐标缩短到原来的$\frac{1}{2}$倍(横坐标不变) | |
| C. | 向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的$\frac{1}{2}$倍(横坐标不变) | |
| D. | 向左平移$\frac{π}{4}$个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) |