题目内容
化简:
= .
tan(π+α)cos(2π+α)sin(α-
| ||
| cos(-α-3π)sin(-3π-α) |
考点:运用诱导公式化简求值
专题:三角函数的求值
分析:原式利用诱导公式化简,计算即可得到结果.
解答:
解:原式=
=-1.
故答案为:-1
| tanαcos2α |
| -cosαsinα |
故答案为:-1
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关题目
函数f(x)=
+lg(1-x)的定义域是( )
| 1 |
| 1-x |
| A、(-1,1)∪(1,+∞) |
| B、(1,+∞) |
| C、(-∞,1) |
| D、(-∞,+∞) |
在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2-b2)tanB=
ac,则角B的值为( )
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
若集合A={x|-2<x<1},B={x|0<x<2},则集合A∪B等于( )
| A、{x|-1<x<1} |
| B、{x|-2<x<1} |
| C、{x|-2<x<2} |
| D、{x|0<x<1} |
若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里面各任意取出1个球,设取去的白球的个数为ξ,则下列概率中等于
的是( )
| ||||||||
|
| A、P(ξ=0) |
| B、P(ξ≤2) |
| C、P(ξ=1) |
| D、P(ξ=2) |