题目内容

20.已知sinθcosθ=$\frac{60}{169}$,且$\frac{π}{4}$<θ<$\frac{π}{2}$,则sinθ=$\frac{12}{13}$,cosθ=$\frac{5}{12}$.

分析 由条件利用同角三角函数的基本关系求得sinθ+cosθ=$\frac{17}{13}$,sinθ-cosθ=$\frac{7}{13}$,由此求得sinθ 和cosθ 的值.

解答 解:∵sinθcosθ=$\frac{60}{169}$,且$\frac{π}{4}$<θ<$\frac{π}{2}$,∴(sinθ+cosθ)2=1+2sinθcosθ=1+$\frac{120}{169}$,sinθ+cosθ=$\frac{17}{13}$,
又 (sinθ-cosθ)2=1-2sinθcosθ=1-$\frac{120}{169}$,∴sinθ-cosθ=$\frac{7}{13}$,
求得sinθ=$\frac{12}{13}$,cosθ=$\frac{5}{13}$,
故答案为:$\frac{12}{13}$;$\frac{5}{12}$.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网