题目内容
9.已知函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,则实数a的最大值为( )| A. | 1 | B. | 2 | C. | e2 | D. | 2e2 |
分析 若函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,则函数y=x2-a($\frac{1}{e}$≤x≤e,e为自然对数的底数)与函数h(x)=2lnx-2的图象有交点,即x2-a=2lnx-2,($\frac{1}{e}$≤x≤e)有解,利用导数法,可得a的最大值.
解答 解:若函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),
若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,
则函数y=x2-a($\frac{1}{e}$≤x≤e,e为自然对数的底数)与函数h(x)=2lnx-2的图象有交点,
即x2-a=2lnx-2,($\frac{1}{e}$≤x≤e)有解,
即a=x2-2lnx+2,($\frac{1}{e}$≤x≤e)有解,
令y=x2-2lnx+2,($\frac{1}{e}$≤x≤e),
则y′=2x-$\frac{2}{x}$,
当$\frac{1}{e}$≤x<1时,y′<0,函数为减函数,
当1<x≤e时,y′>0,函数为增函数,
故x=1时,函数取最小值3,
当x=e时,函数取最大值e2,
故实数a的最大值为e2,
故选:C
点评 本题考查的知识点是函数图象的交点与方程根的关系,利用导数求函数的最值,难度中档.
练习册系列答案
相关题目
20.设向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(2,-3),若满足$\overrightarrow{a}⊥\overrightarrow{b}$,则m=( )
| A. | $\frac{2}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | -$\frac{3}{2}$ |
17.①设数列{an}的前n项和为Sn,由an=2n-1,求出S${\;}_{1}={1}^{2}$,S${\;}_{2}={2}^{2}$,S${\;}_{3}={3}^{2}$,…,推断:S${\;}_{n}={n}^{2}$;②由圆x2+y2=r2的面积S=πr2,推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积S=πab.则①②两个推理依次是( )
| A. | 归纳推理,类比推理 | B. | 演绎推理,类比推理 | ||
| C. | 类比推理,演绎推理 | D. | 归纳推理,演绎推理 |
1.定义在R上的函数f(x)满足:f(x)>1-f′(x),f(0)=4,则不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1(其中e为自然对数的底数)的解集为( )
| A. | (3,+∞) | B. | (-∞,0)∪(3,+∞) | C. | (0,+∞) | D. | (-∞,0)∪(0,+∞) |
18.4位同学各自在周五、周六、周日三天中任选一天参加公益活动,则三天都有同学参加公益活动的概率为( )
| A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{26}{27}$ |