题目内容
4.函数f(x)=Asin(ωx-$\frac{π}{3}$)+2(A>0,ω>0)的最大值为4,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$.(1)求函数f(x)的解析式;
(2)设α∈(0,π),则f($\frac{α}{2}$)=3,求α的值.
分析 (1)根据函数的最值和函数的周期性即可求f(x)的解析式;
(2)根据函数的解析式得到sin(α-$\frac{π}{3}$)=$\frac{1}{2}$,由α∈(0,π),得到-$\frac{π}{3}$<α-$\frac{π}{3}$<$\frac{2π}{3}$,求出α-$\frac{π}{3}$=$\frac{π}{6}$,解出α的值即可.
解答 解:(1)∵函数f(x)=Asin(ωx-$\frac{π}{3}$)+2(A>0,ω>0)的最大值为4,
∴2+A=4,即A=2,
∵图象相邻两条对称轴之间的距离是$\frac{π}{2}$,
∴$\frac{T}{2}$=$\frac{π}{2}$,即函数的周期T=π,
即T=$\frac{2π}{ω}$=π,得ω=2,
即f(x)的解析式为f(x)=2sin(2x-$\frac{π}{3}$)+2;
(2)f($\frac{α}{2}$)=2sin(α-$\frac{π}{3}$)+2=3,
即sin(α-$\frac{π}{3}$)=$\frac{1}{2}$,
∵α∈(0,π),
∴-$\frac{π}{3}$<α-$\frac{π}{3}$<$\frac{2π}{3}$,
∴α-$\frac{π}{3}$=$\frac{π}{6}$,
∴α=$\frac{π}{2}$.
点评 本题主要考查三角函数解析式的求解以及三角函数的图象和性质,根据条件求出函数的解析式是解决本题的关键.
练习册系列答案
相关题目
18.已知函数f(x)=$\left\{\begin{array}{l}1-{x^2}(x≤1)\\{x^2}+x-2(x>1)\end{array}$则$f[\frac{1}{f(2)}]$的值为( )
| A. | $\frac{15}{16}$ | B. | $\frac{8}{9}$ | C. | $-\frac{27}{16}$ | D. | 18 |
9.已知函数g(x)=a-x2($\frac{1}{e}$≤x≤e,e为自然对数的底数),若函数y=g(x)的图象与函数h(x)=2lnx-2的图象存在关于x轴对称的点,则实数a的最大值为( )
| A. | 1 | B. | 2 | C. | e2 | D. | 2e2 |