题目内容
已知数列{an}中,a1=2,an+1=an2+an-
(n∈N*)
(1)证明:数列{lg(an+
)是等比数列,并求数列{an}的通项公式;
(2)记数列{bn}满足bn=lg(an+
),求数列{bn}的前n项和Sn.
| 1 |
| 4 |
(1)证明:数列{lg(an+
| 1 |
| 2 |
(2)记数列{bn}满足bn=lg(an+
| 1 |
| 2 |
考点:数列的求和,等比数列的通项公式,等比关系的确定
专题:等差数列与等比数列
分析:(1)把已知的递推式变形,得到an+1+
=(an+
)2,两边取对数后得数列{lg(an+
)}是等比数列,求其通项公式后可得数列{an}的通项公式;
(2)直接利用等比数列的前n项和公式得答案.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)直接利用等比数列的前n项和公式得答案.
解答:
证明:(1)由an+1=an2+an-
,得an+1+
=(an+
)2,
∴lg(an+1+
)=lg(an+
)2=2lg(an+
),
∴
=2.
则数列{lg(an+
)}是以lg(a1+
)=lg
为首项,以2为公比的等比数列,
∴lg(an+
)=(lg
)•2n-1,即an+
=(
)2n-1,
∴an=(
)2n-1-
;
(2)∵数列{lg(an+
)}是以lg(a1+
)=lg
为首项,以2为公比的等比数列,
∴Sn=n•lg
+
=lg(
)n+n2-n.
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
∴lg(an+1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴
lg(an+1+
| ||
lg(an+
|
则数列{lg(an+
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
∴lg(an+
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
∴an=(
| 5 |
| 2 |
| 1 |
| 2 |
(2)∵数列{lg(an+
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
∴Sn=n•lg
| 5 |
| 2 |
| 2n(n-1) |
| 2 |
| 5 |
| 2 |
点评:本题考查了等比关系的确定,考查了等比数列的通项公式与等比数列的前n项和,是中档题.
练习册系列答案
相关题目
函数f(x)=x3+3x-1在以下哪个区间一定有零点( )
| A、(-1,0) |
| B、(0,1) |
| C、(1,2) |
| D、(2,3) |