题目内容
4.已知角α终边过直线l1:x-y=0和直线l2:2x+y-3=0的交点P.求sinα,cosα,tanα的值.
分析 求出P的坐标,可得r,即可求出sinα,cosα,tanα.
解答 解:由$\left\{\begin{array}{l}{x-y=0}\\{2x+y-3=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$--------------------------------------------(3分)
∴P(1,1)--------------------------------------------------------------(4分)
∴r=$\sqrt{2}$,---------------------------------------------------------(6分)
∴sinα=cosα=$\frac{\sqrt{2}}{2}$,tanα=1.--------------------------------------(12分)
点评 本题考查三角函数的定义,考查两条直线的位置关系,比较基础.
练习册系列答案
相关题目
14.下列选项中,说法正确的是( )
| A. | 命题“?x0∈R,${x_0}^2-{x_0}≤0$”的否定为“?x∈R,x2-x>0” | |
| B. | 命题“在△ABC中,A>30°,则$sinA>\frac{1}{2}$”的逆否命题为真命题 | |
| C. | 若非零向量$\overrightarrow a$、$\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a}|-|{\overrightarrow b}|$,则$\overrightarrow a$与$\overrightarrow b$共线 | |
| D. | 设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的充分必要条件 |
12.设集合A={1,2,3,5},B={2,4,6},则A∩B=( )
| A. | {2} | B. | {4,6} | C. | {1,3,5} | D. | {4,6,7,8} |
19.若m,n满足m+n-1=0,则直线mx+y+n=0过定点( )
| A. | (1,-1) | B. | (0,-n) | C. | (0,0) | D. | (-1,1) |
9.已知角α的终边过点P(-3m,4m)(m<0),则2sinα+cosα的值是( )
| A. | 1 | B. | $\frac{2}{5}$ | C. | -$\frac{2}{5}$ | D. | -1 |
13.为了得到函数=4sin(2x+$\frac{π}{5}$),x∈R的图象,只需把函数y=4sin(x+$\frac{π}{5}$),x∈R的图象上所有点的( )
| A. | 横坐标伸长到原来的2倍,纵坐标不变 | |
| B. | 纵坐标伸长到原来的2倍,横坐标不变 | |
| C. | 横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 | |
| D. | 纵坐标缩短到原来的$\frac{1}{2}$倍,横坐标不变 |