题目内容

15.已知定义在(0,+∞)的函数f(x),其导函数为f′(x),满足:f(x)>0且$\frac{2x+3}{x}>-\frac{{{f^'}(x)}}{f(x)}$总成立,则下列不等式成立的是(  )
A.e2e+3f(e)<eπ3f(π)B.e2e+3f(π)>eπ3f(e)C.e2e+3f(π)<eπ3f(e)D.e2e+3f(e)>eπ3f(π)

分析 令g(x)=e2xx3f(x),g′(x)=)=e2xx2[(2x+3)f(x)+xf′(x)]>0,⇒g(x)=e2xx3f(x)在(0,+∞)上单调递增⇒g(e)<g(π),即可得到.

解答 解:∵f(x)>0且$\frac{2x+3}{x}>-\frac{{{f^'}(x)}}{f(x)}$总成立,∴(2x+3)f(x)+xf′(x)>0.
令g(x)=e2xx3f(x),g′(x)=)=e2xx2[(2x+3)f(x)+xf′(x)]>0,
∴g(x)=e2xx3f(x)在(0,+∞)上单调递增,∴g(e)<g(π),
∴e2e+3f(e)<eπ3f(π),故选:A.

点评 本题考查了构造新函数,处理不等式问题,属于压轴题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网