题目内容
2.已知集合A={x|x2-2x-3≤0},B={y|y=x2,x∈R},则A∩B=( )| A. | ∅ | B. | [0,1] | C. | [0,3] | D. | [-1,+∞) |
分析 求出A中不等式的解集确定出A,求出B中y的范围确定出B,找出两集合的交集即可.
解答 解:由A中不等式变形得:(x-3)(x+1)≤0,
解得:-1≤x≤3,即A=[-1,3],
由B中y=x2≥0,得到B=[0,+∞),
则A∩B=[0,3],
故选:C.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
17.已知函数f(x)=$\left\{\begin{array}{l}{{ax}^{2}+2x+1,(-2<x≤0)}\\{ax-3,(x>0)}\end{array}\right.$有3个零点,则实数a的取值范围是( )
| A. | ($\frac{3}{4}$,1) | B. | ($\frac{1}{4}$,1) | C. | (0,1) | D. | (-∞,1) |
14.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=( )
| A. | x+1 | B. | 2x-1 | C. | -x+1 | D. | x+1或-x-1 |
12.函数$f(x)=\left\{{\begin{array}{l}{x+1(x≤-1)}\\{{x^2}(-1<x<2)}\\{2x(x≥2)}\end{array}}\right.$,若f(x)=2,则x的值是( )
| A. | $\sqrt{2}$ | B. | $±\sqrt{2}$ | C. | 0或1 | D. | $\sqrt{3}$ |