题目内容

a
b
,<
a
c
>=60°,<
b
c
>=30°,且|
a
|=1,|
b
|=2,|
c
|=3,则|
a
+
b
+
c
|2=
 
考点:平面向量数量积的运算,数量积表示两个向量的夹角
专题:计算题,平面向量及应用
分析:运用向量的数量积的定义和完全平方公式,计算即可得到所求值.
解答: 解:由于
a
b
,<
a
c
>=60°,<
b
c
>=30°,
且|
a
|=1,|
b
|=2,|
c
|=3,
a
b
=0,
a
c
=1×2×cos60°=1,
b
c
=2×3×cos30°=3
3

则|
a
+
b
+
c
|2=
a
2
+
b
2
+
c
2
+2
a
b
+2
a
c
+2
b
c

=1+4+9+0+2+6
3
=16+6
3

故答案为:16+6
3
点评:本题考查平面向量的数量积的定义和性质,考查完全平方公式及运用,考查运算能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网