题目内容
5.在直角坐标标系xoy中,已知曲线${C_1}:\left\{{\begin{array}{l}{x=1+cosα}\\{y={{sin}^2}α-\frac{9}{4}}\end{array}}\right.$(α为参数,α∈R),在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线${C_2}:ρsin(θ+\frac{π}{4})$=$-\frac{{\sqrt{2}}}{2}$,曲线C3:ρ=2cosθ.(Ⅰ)求曲线C1与C2的交点M的直角坐标;
(Ⅱ)设A,B分别为曲线C2,C3上的动点,求|AB|的最小值.
分析 (Ⅰ)求出曲线C1的普通方程和曲线C2的直角坐标方程,联立方程组能求出曲线C1与C2的交点M的直角坐标.
(Ⅱ)曲线C3是以C(1,0)为圆心,半径r=1的圆,求出圆心C3到直线x+y+1=0的距离d,由此能求出|AB|的最小值.
解答 解:(Ⅰ)曲线${C_1}:\left\{{\begin{array}{l}{x=1+cosα}\\{y={{sin}^2}α-\frac{9}{4}}\end{array}}\right.$(α为参数,α∈R),消去参数α,
得:y=-$\frac{5}{4}$-(x-1)2,x∈[0,2],①
∵曲线${C_2}:ρsin(θ+\frac{π}{4})$=$-\frac{{\sqrt{2}}}{2}$,∴ρcosθ+ρsinθ+1=0,
∴曲线C2:x+y+1=0,②,
联立①②,消去y可得:4x2-12x+5=0,解得x=$\frac{1}{2}$或x=$\frac{5}{2}$(舍去),
∴M($\frac{1}{2},-\frac{3}{2}$).…(5分)
(Ⅱ)曲线C3:ρ=2cosθ,即ρ2=2ρcosθ,
∴曲线C3:(x-1)2+y2=1,是以C3(1,0)为圆心,半径r=1的圆
圆心C3到直线x+y+1=0的距离为d=$\sqrt{2}$,
∴|AB|的最小值为$\sqrt{2}-1$.…(10分)
点评 本题考查曲线的交点的直角坐标的求法,考查线段的最小值的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.
练习册系列答案
相关题目
15.如果$a+\frac{1}{a}=2$,那么${a^2}+\frac{1}{a^2}$的值是( )
| A. | 2 | B. | 4 | C. | 0 | D. | -4 |
10.设F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F2的直线交双曲线右支于A、B两点.若AF2⊥AF1,且|BF2|=2|AF1|,则双曲线的离心率为( )
| A. | $\frac{\sqrt{17}}{3}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{13}$ | D. | $\frac{\sqrt{58}}{4}$ |
17.已知O是△ABC中的一点,$\overrightarrow{OA}$+3$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow 0$,则△OAB与△OAC的面积之比为( )
| A. | 1:3 | B. | 1 | C. | 5:3 | D. | 3:5 |
14.抛物线x=4y2的焦点坐标是 ( )
| A. | ($\frac{1}{16}$,0) | B. | (1,0) | C. | (0,$\frac{1}{16}$) | D. | (0,1 ) |