题目内容
10.设F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,过点F2的直线交双曲线右支于A、B两点.若AF2⊥AF1,且|BF2|=2|AF1|,则双曲线的离心率为( )| A. | $\frac{\sqrt{17}}{3}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{13}$ | D. | $\frac{\sqrt{58}}{4}$ |
分析 由题意,设|AF2|=m,则|BF2|=2m,利用勾股定理,求出a,m的关系,再利用勾股定理确定a,c的关系,即可求出双曲线的离心率.
解答 解:由题意,设|AF2|=m,则|BF2|=2m,
∴|AF1|=2a+m,|BF1|=2a+2m,
∵AF2⊥AF1,
∴(2a+2m)2=(2a+m)2+(3m)2,
∴m=$\frac{2}{3}$a,
∵(2c)2=(2a+m)2+(m)2,
∴e=$\frac{c}{a}$=$\frac{\sqrt{17}}{3}$.
故选A.
点评 本题考查双曲线的离心率,考查勾股定理的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
15.若?x∈(-1,2),ax+2≠0是假命题的一个充分不必要条件为a∈( )
| A. | (-∞,-1)∪(2,+∞) | B. | (-1,2) | C. | (-∞,-1) | D. | (-∞,-1]∪[2,+∞) |
2.已知不等式$\frac{{{2^x}+1}}{3}>1-\frac{{{2^x}-1}}{2}$的解集为M,则下列说法正确的是( )
| A. | {0}⊆M | B. | M=∅ | C. | -1∈M | D. | 2∈M |