题目内容

在极坐标系中,过点M(2,0)的直线l与极轴的夹角α=
π
3

(Ⅰ)将l的极坐标方程写成ρ=f(θ)的形式
(Ⅱ)在极坐标系中,以极点为坐标原点,以极轴为x轴的非负半轴建立平面直角坐标系.若曲线C2
x=3sinθ
y=acosθ
(θ为参数,a∈R)与l有一个公共点在Y轴上,求a的值.
考点:参数方程化成普通方程,简单曲线的极坐标方程
专题:选作题,坐标系和参数方程
分析:(Ⅰ)取直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ,在三角形POM中,利用正弦定理建立等式关系,从而求出所求;
(Ⅱ)直线l的直角坐标方程为y=
3
(x-2)
,与y轴的交点为(0,-2
3
)
,即可求a的值.
解答: 解:(Ⅰ)直线l上任意一点P(ρ,θ),连接OP,则OP=ρ,∠POM=θ
在三角形POM中,利用正弦定理可知:
ρ
sin
3
=
2
sin(
π
3
-θ)

解得ρ=
3
sin(
π
3
-θ)

(Ⅱ)直线l的直角坐标方程为y=
3
(x-2)
,与y轴的交点为(0,-2
3
)
,所以a=±2
3
点评:本题主要考查了简单曲线的极坐标方程,以及余弦定理的应用,同时考查了分析问题的能力和转化的思想,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网