题目内容
已知正项数列{an},其前n项和Sn,满足6Sn=
+3an+2,又a1,a2,a6是等比数列{bn}的前三项.
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1bn+a2bn-1+…+anb1,n∈N+,证明3Tn+1=2bn+1-an+1(n∈N+).
| a | 2 n |
(1)求数列{an}与{bn}的通项公式;
(2)记Tn=a1bn+a2bn-1+…+anb1,n∈N+,证明3Tn+1=2bn+1-an+1(n∈N+).
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)根据等比数列的通项公式,求出首项和公比,即可求出相应的通项公式.
(2)利用错位相减法求出Tn,即得到得到结论.
(2)利用错位相减法求出Tn,即得到得到结论.
解答:
解:(1)∵6Sn=
+3an+2,①
∴6a1=
+3a1+2,解得a1=1或a1=2.
又6Sn-1=
+3an-1+2(n≥2),②
由①-②,得6an=(
-
)+3(an-an-1),
即(an+an-1)(an-an-1-3)=0.
∵an+an-1>0,∴an-an-1=3(n≥2).
当a1=2时,a2=5,a6=17,此时a1,a2,a6不成等比数列,∴a1≠2;∴an=3n-2,bn=4n-1.
(2)由(1)得Tn=1×4n-1+4×4n-2+…+(3n-5)×41+(3n-2)×40,③
∴4Tn=1×4n+4×4n-1+7×4n-2+…+(3n-2)×41.④
由④-③得3Tn=4n+3×(4n-1+4n-2+…+41)-(3n-2)=4n+
-(3n-2)
=2×4n-(3n+1)-1=2bn+1-an+1-1,
∴3Tn+1=2bn+1-an+1,n∈N+.
| a | 2 n |
∴6a1=
| a | 2 1 |
又6Sn-1=
| a | 2 n-1 |
由①-②,得6an=(
| a | 2 n |
| a | 2 n-1 |
即(an+an-1)(an-an-1-3)=0.
∵an+an-1>0,∴an-an-1=3(n≥2).
当a1=2时,a2=5,a6=17,此时a1,a2,a6不成等比数列,∴a1≠2;∴an=3n-2,bn=4n-1.
(2)由(1)得Tn=1×4n-1+4×4n-2+…+(3n-5)×41+(3n-2)×40,③
∴4Tn=1×4n+4×4n-1+7×4n-2+…+(3n-2)×41.④
由④-③得3Tn=4n+3×(4n-1+4n-2+…+41)-(3n-2)=4n+
| 12×(1-4n-1) |
| 1-4 |
=2×4n-(3n+1)-1=2bn+1-an+1-1,
∴3Tn+1=2bn+1-an+1,n∈N+.
点评:本题主要考查数列通项公式和前n项和的计算,利用错位相减法是解决本题的关键,考查学生的计算能力.
练习册系列答案
相关题目
已知双曲线
-
=1(a,b>0)的左、右焦点分别为F1,F2,过F2且倾斜角为60°的直线与双曲线右支交于A,B两点,若△ABF1为等腰三角形,则该双曲线的离心率为( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||||||
B、
| ||||||||
C、
| ||||||||
| D、其它 |