题目内容
如图给出的是计算+++…+的值的程序框图,其中判断框内应填入的是( )
A. B. C. D.
不等式(x—1)(2—x)≥0的解集是( )
A. B.
C. D.
在锐角△中,内角的对边分别为,且
(1)求角的大小。
(2)若,求△的面积。
(本小题满分12分)如图所示,已知A(1,3),B(-1,-1),C(2,1).求△ABC的BC边上的高所在的直线方程.
公元前世纪,古希腊欧几里得在《几何原本》里提出:“球的体积()与它的直径()的立方成正比”,此即,欧几里得未给出的值.世纪日本数学家们对求球的体积的方法还不了解,他们将体积公式中的常数称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱)、正方体也可利用公式求体积(在等边圆柱中,表示底面圆的直径;在正方体中,表示棱长).假设运用此体积公式求得球(直径为)、等边圆柱(底面圆的直径为)、正方体(棱长为)的“玉积率”分别为、、,那么( )
已知A={-1,3,m},集合B={3,4},若B⊆A,则实数m=_____________.
已知一组数据X1,X2,X3,…,Xn的方差是S2,那么另一组数据2X1-1,2X2-1,2X3-1,…,2Xn-1
的方差是( )
(本小题满分14分)
设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.
(本小题满分12分)正方形与梯形所在平面互相垂直,,点在线段上且不与重合.
(Ⅰ)当点是中点时,求证:;
(Ⅱ)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.