题目内容
3、曲线的极坐标方程ρ=4cosθ化为直角坐标方程为( )
分析:先将原极坐标方程ρ=4cosθ两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行判断.
解答:解:将原极坐标方程ρ=4cosθ,化为:
ρ2=4ρcosθ,
化成直角坐标方程为:x2+y2-4x=0,
即y2+(x-2)2=4.
故选B.
ρ2=4ρcosθ,
化成直角坐标方程为:x2+y2-4x=0,
即y2+(x-2)2=4.
故选B.
点评:本题考查点的极坐标和直角坐标的互化,利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
练习册系列答案
相关题目
已知某曲线的参数方程是
(j为参数).若以原点为极点,x轴的正半轴为极轴,长度单位不变,建立极坐标系,则该曲线的极坐标方程是( )
|
| A、ρ=1 |
| B、ρcos2θ=1 |
| C、ρ2sin2θ=1 |
| D、ρ2cos2θ=1 |