题目内容
已知定圆A:(x+5)2+y2=49和定圆B:(x-5)2+y2=1,动圆C与两定圆都外切,则动圆C的圆心的轨迹方程为 .
考点:圆与圆的位置关系及其判定
专题:直线与圆
分析:设动圆的半径为r,由题意利用两圆向外切的性质可得CA-CB=6<AB=10,可得点C的轨迹是以AB为焦点的双曲线的右支,根据c=5,2a=6,求出a、b的值,可得圆心的轨迹方程.
解答:
解:设动圆的半径为r,圆心为C(x,y),由题意利用两圆向外切的性质可得
CA=7+r,CB=1+r,∴CA-CB=6<AB=10,
故点C的轨迹是以AB为焦点的双曲线的右支,根据c=5,2a=6,
可得a=3 b=
=4,故圆C的圆心的轨迹方程为
-
=1 (x≥3),
故答案为:
-
=1 (x≥3).
CA=7+r,CB=1+r,∴CA-CB=6<AB=10,
故点C的轨迹是以AB为焦点的双曲线的右支,根据c=5,2a=6,
可得a=3 b=
| c2-a2 |
| x2 |
| 9 |
| y2 |
| 16 |
故答案为:
| x2 |
| 9 |
| y2 |
| 16 |
点评:本题主要考查两圆向外切的性质,双曲线的定义、标准方程,属于基础题.
练习册系列答案
相关题目