题目内容

15.已知函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}\right.$,则$f(f(\frac{1}{4}))$的值是(  )
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.4D.-4

分析 利用分段函数的性质先求出f($\frac{1}{4}$),再求出$f(f(\frac{1}{4}))$的值.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}\right.$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
$f(f(\frac{1}{4}))$=f(-2)=2-2=$\frac{1}{4}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网