题目内容
椭圆的中心在坐标原点,F为左焦点,B为上顶点,A为右顶点,当FB⊥AB时,此类椭圆被称为“黄金椭圆”,其离心率为
,类比“黄金椭圆”可推算出“黄金双曲线”的离心率为( )
| ||
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:在黄金双曲线中,|BF|2+|AB|2=|AF|2,由此可知b2+c2+c2=a2+c2+2ac,再由b2=c2-a2,整理得c2=a2+ac,即e2-e-1=0,解这个方程就能求出黄金双曲线的离心率e.
解答:
解:在黄金双曲线中,|OA|=a,|OB|=b,|OF|=c,
由题意可知,|BF|2+|AB|2=|AF|2,
∴b2+c2+c2=a2+c2+2ac,
∵b2=c2-a2,整理得c2=a2+ac,
∴e2-e-1=0,
∵e>1,
∴黄金双曲线的离心率e=
.
故选:A.
由题意可知,|BF|2+|AB|2=|AF|2,
∴b2+c2+c2=a2+c2+2ac,
∵b2=c2-a2,整理得c2=a2+ac,
∴e2-e-1=0,
∵e>1,
∴黄金双曲线的离心率e=
| ||
| 2 |
故选:A.
点评:注意寻找黄金双曲线中a,b,c之间的关系,利用双曲线的性质求解.
练习册系列答案
相关题目
如图所示关于算法的流程图的运行结果正确的是( )

| A、3 | ||
B、
| ||
| C、4 | ||
D、
|
已知离散型随机变量X的分布列如下表:
若E(X)=0,D(X)=1,则a,b的值分别为( )
| X | -1 | 0 | 1 | 2 | ||
| P | a | b | c |
|
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
已知i是虚数单位,则
是( )
| 2-i |
| 1+2i |
| A、正数 | B、负数 |
| C、纯虚数 | D、虚数而不是纯虚数 |
已知O是坐标原点,点A(-1,0),若M(x,y)为平面区域
上的一个动点,则|
+
|的取值范围是( )
|
| OA |
| OM |
A、[1,
| ||
B、[2,
| ||
| C、[1,2] | ||
D、[0,
|
若集合A={x|x>-2},B={x|x≥a+1或x≤2(a-1)},A∩B=A,则实数a的取值范围是( )
| A、a≤-3 |
| B、a<-3 |
| C、a≤-3或a≥3 |
| D、a<-3或a>3 |
某程序框图如图所示,则运行后输出结果为( )

| A、504 | B、120 |
| C、240 | D、247 |