ÌâÄ¿ÄÚÈÝ

9£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1£¨a£¾b£¾0£©$ºÍÍÖÔ²C2£º$\frac{{x}^{2}}{2}+{y}^{2}$=1µÄÀëÐÄÂÊÏàͬ£¬Çҵ㣨$\sqrt{2}$£¬1£©ÔÚÍÖÔ²C1ÉÏ£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèPΪÍÖÔ²C2ÉÏÒ»¶¯µã£¬¹ýµãP×÷Ö±Ïß½»ÍÖÔ²C1ÓÚA¡¢CÁ½µã£¬ÇÒPǡΪÏÒACµÄÖе㣮ÊÔÅжϡ÷AOCµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£»Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£¬Éè³öÖ±Ïß·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÒÔ¼°µãµ½Ö±ÏߵľàÀ빫ʽ£¬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½£¬»¯¼òÕûÀí£¬¼´¿ÉµÃµ½ËùÇó¶¨Öµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬$\frac{2}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=1ÇÒ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬a2-b2=c2£¬
¼´a2=4£¬b2=2£¬
ÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»    
£¨2£©µ±Ö±ÏßACµÄбÂʲ»´æÔÚʱ£¬
±ØÓÐP£¨¡À$\sqrt{2}$£¬0£©£¬´Ëʱ|AC|=2£¬S¡÷AOC=$\sqrt{2}$£»
µ±Ö±ÏßACµÄбÂÊ´æÔÚʱ£¬ÉèÆäбÂÊΪk¡¢µãP£¨x0£¬y0£©£¬
ÔòAC£ºy-y0=k£¨x-x0£©£¬
ÓëÍÖÔ²C1ÁªÁ¢£¬µÃ£¨1+2k2£©x2+4k£¨y0-kx0£©x+2£¨y0-kx0£©2-4=0£¬
ÉèA£¨x1£¬y1£©£¬C£¨x2£¬y2£©£¬Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{2k£¨{y}_{0}-k{x}_{0}£©}{1+2{k}^{2}}$£¬
¼´x0=-2ky0£¬ÓÖx02+2y02=2£¬y02=$\frac{1}{1+2{k}^{2}}$£¬
S¡÷AOC=$\frac{1}{2}$•$\frac{|{y}_{0}-k{x}_{0}|}{\sqrt{1+{k}^{2}}}$•$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16{k}^{2}£¨{y}_{0}-k{x}_{0}£©^{2}-4£¨1+2{k}^{2}£©[2£¨{y}_{0}-k{x}_{0}£©^{2}-4]}}{1+2{k}^{2}}$
=$\sqrt{2}$•$\frac{|{y}_{0}-k{x}_{0}|\sqrt{2£¨1+2{k}^{2}£©-£¨{y}_{0}-k{x}_{0}£©^{2}}}{1+2{k}^{2}}$
=$\sqrt{2}$•$\frac{£¨1+2{k}^{2}£©|{y}_{0}|\sqrt{2£¨1+2{k}^{2}£©-£¨1+2{k}^{2}£©}}{1+2{k}^{2}}$
=$\sqrt{2}$|y0|•$\sqrt{1+2{k}^{2}}$=$\sqrt{2}$£®
×ÛÉÏ£¬ÎÞÂÛPÔõÑù±ä»¯£¬¡÷AOCµÄÃæ»ýΪ³£Êý$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍµãÂú×ãÍÖÔ²·½³Ì£¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄÇ󷨣¬×¢ÒâÌÖÂÛÖ±ÏßµÄбÂÊÊÇ·ñ´æÔÚ£¬ÁªÁ¢Ö±ÏߺÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø