题目内容
4.命题“空间两直线a,b互相平行”成立的充分条件是( )| A. | 直线a,b都平行于同一个平面 | B. | 直线a平行于直线b所在的平面 | ||
| C. | 直线a,b都垂直于同一条直线 | D. | 直线a,b都垂直于同一个平面 |
分析 根据线线平行的判定定理判断即可.
解答 解:直线a,b都平行于同一个平面,a,b可能相交,可能异面也可能平行,故A错误;
直线a平行于直线b所在的平面,a,b可能异面也可能平行,故B错误;
直线a,b都垂直于同一条直线,a,b可能相交,可能异面也可能平行,故C错误;
直线a,b都垂直于同一个平面,则a∥b,故D正确,
故选:D.
点评 本题考查了线线平行的判定定理,考查充分必要条件,是一道基础题.
练习册系列答案
相关题目
12.已知函数$f(x)=\left\{{\begin{array}{l}{x+6,x≤2}\\{{3^x}-1,x>2}\end{array}}\right.$,若f(a)=80,则f(a-4)=( )
| A. | 0 | B. | 3 | C. | 6 | D. | 9 |
19.模拟考试后,某校对甲、乙两个班的数学考试成绩进行分析,规定:不少于120分为优秀,否则为非优秀,统计成绩后,得到如下的2×2列联表,已知在甲、乙两个班全部100人中随机抽取1人为优秀的概率为$\frac{3}{10}$.
(1)请完成上面的2×2列联表
(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”?
(3)在“优秀”的学生人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中甲班学生恰有2人的概率.
参考公式与临界表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| 优秀 | 非优秀 | 合计 | |
| 甲班 | 10 | ||
| 乙班 | 30 | ||
| 合计 | 100 |
(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”?
(3)在“优秀”的学生人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中甲班学生恰有2人的概率.
参考公式与临界表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
16.
某电视台为调查市民对本台某节目的喜爱是否与年龄有关,随机抽取了100名市民,其中是否喜欢该节目的人数如图所示:
(1)写出列表中a,b,c,d的值;
(2)判断是否有99%的把握认为喜欢该节目与年龄有关,说明你的理由;
(3)现计划在这次调查中按年龄段用分层抽样的方法选取5名市民,并从中抽取2名幸运市民,求2名幸运市民中至少有一人在30-50岁之间的概率.
下面的临界值表供参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(d+b)}$,其中n=a+b+c+d.
| 喜欢 | 不喜欢 | 合计 | |
| 10岁至30岁 | a | b | 60 |
| 30岁至50岁 | c | d | 40 |
| 合计 | 75 | 25 | 100 |
(2)判断是否有99%的把握认为喜欢该节目与年龄有关,说明你的理由;
(3)现计划在这次调查中按年龄段用分层抽样的方法选取5名市民,并从中抽取2名幸运市民,求2名幸运市民中至少有一人在30-50岁之间的概率.
下面的临界值表供参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
13.设集合M={x||x-1|≤1},N={x|y=lg(x2-1)},则M∩∁RN=( )
| A. | [1,2] | B. | [0,1] | C. | (-1,0) | D. | (0,2) |