题目内容

3.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x},(x>1)}\\{{x^2}-6x+9,(x≤1)}\end{array}}\right.$,则不等式f(x)>f(1)解集是{x|x<1或x>2}.

分析 先求出f(1)的值,由 $\left\{\begin{array}{l}{x>1}\\{{2}^{x}>4}\end{array}\right.$得 x的范围,再由$\left\{\begin{array}{l}{x≤1}\\{{x}^{2}-6x+9>4}\end{array}\right.$  求得x的范围,再取并集即得所求.

解答 解:∵$f(x)=\left\{{\begin{array}{l}{{2^x},(x>1)}\\{{x^2}-6x+9,(x≤1)}\end{array}}\right.$,
∴f(1)=4.
由$\left\{\begin{array}{l}{x>1}\\{{2}^{x}>4}\end{array}\right.$解得x>2.
由$\left\{\begin{array}{l}{x≤1}\\{{x}^{2}-6x+9>4}\end{array}\right.$ 解得x<1.
故不等式f(x)>f(1)的解集是{x|x<1或x>2},
故答案为:{x|x<1或x>2}

点评 本题主要考查指数不等式的解法,一元二次不等式的解法,体现了分类讨论的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网