题目内容
【题目】已知点
是抛物线
的准线上一点,F为抛物线的焦点,P为抛物线上的点,且
,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.
【答案】![]()
【解析】
由点
坐标可确定抛物线方程,由此得到
坐标和准线方程;过
作准线的垂线,垂足为
,根据抛物线定义可得
,可知当直线
与抛物线相切时,
取得最小值;利用抛物线切线的求解方法可求得
点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.
是抛物线
准线上的一点 ![]()
抛物线方程为
,准线方程为![]()
过
作准线的垂线,垂足为
,则![]()
![]()
![]()
设直线
的倾斜角为
,则![]()
当
取得最小值时,
最小,此时直线
与抛物线相切
设直线
的方程为
,代入
得:![]()
,解得:
或![]()
双曲线的实轴长为
,焦距为![]()
双曲线的离心率![]()
故答案为:![]()
【题目】支付宝和微信支付已经成为现如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的
列联表:
支付宝支付 | 微信支付 | |
男 | 40 | 10 |
女 | 25 | 25 |
附表及公式:
,
.
P( | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
则下面结论正确的是( )
A.有
以上的把握认为“支付方式与性别有关”
B.在犯错误的概率超过
的前提下,认为“支付方式与性别有关”
C.在犯错误的概率不超过
的前提下,认为“支付方式与性别有关”
D.有
以上的把握认为“支付方式与性别无关”
【题目】这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期
和全国累计报告确诊病例数量
(单位:万人)之间的关系如下表:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
全国累计报告确诊病例数量 | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 | 3.1 | 3.5 |
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合
与
的关系?
(2)求出
关于
的线性回归方程
(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.
参考数据:
,
,
,
.
参考公式:相关系数![]()
回归方程
中斜率和截距的最小二乘估计公式分别为:
,
.