题目内容

12.求证:$\frac{sin(α+β)sin(α-β)}{s{in}^{2}αco{s}^{2}β}$=1-$\frac{ta{n}^{2}β}{ta{n}^{2}α}$.

分析 由和差角的三角函数公式和同角三角函数基本关系,由左向右证明即可.

解答 证明:左边=$\frac{sin(α+β)sin(α-β)}{s{in}^{2}αco{s}^{2}β}$
=$\frac{(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)}{si{n}^{2}αco{s}^{2}β}$
=$\frac{si{n}^{2}αco{s}^{2}β-co{s}^{2}αsi{n}^{2}β}{si{n}^{2}αco{s}^{2}β}$
=1-$\frac{co{s}^{2}αsi{n}^{2}β}{si{n}^{2}αco{s}^{2}β}$
=1-$\frac{ta{n}^{2}β}{ta{n}^{2}α}$=右边,
故等式成立.

点评 本题考查三角函数恒等式的证明,涉及和差角的三角函数公式和同角三角函数基本关系,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网