题目内容
20.已知函数f(x)=|x-2|,g(x)=|x+1|-x.(1)解不等式f(x)>g(x);
(2)若存在实数x,使不等式m-g(x)≥f(x)+x(m∈R)能成立,求实数m的最小值.
分析 (1)通过讨论x的范围,去掉绝对值,求出各个区间的x的范围,取并集即可;(2)问题转化为m≥(|x-2|+|+1|)min,根据绝对值的性质求出m的最小值即可.
解答 解:(1)由题意不等式f(x)>g(x)可化为|x-2|+x>|x+1|,
当x<-1时,-(x-2)+x>-(x+1),解得x>-3,即-3<x<-1;
当-1≤x≤2时,-(x-2)+x>x+1,解得x<1,即-1≤x<1;
当x>2时,x-2+x>x+1,解得x>3,即x>3,
综上所述,不等式f(x)>g(x)的解集为{x|-3<x<1或x>3}.
(2)由不等式m-g(x)≥f(x)+x(m∈R)可得m≥|x-2|+|x+1|,
∴m≥(|x-2|+|+1|)min,∵|x-2|+|x+1|≥|x-2-(x+1)|=3,
∴m≥3,故实数m的最小值是3.
点评 本题考查了解绝对值不等式问题,考查函数恒成立问题,是一道中档题.
练习册系列答案
相关题目
10.若某个扇形的半径为3cm,弧长为πcm,则该扇形的面积为( )
| A. | πcm2 | B. | $\frac{3}{2}π$cm2 | C. | 3πcm2 | D. | 6πcm2 |
11.a、b均为实数,则a<b<0是a2>b2的( )
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
8.已知集合A={-2,-1,0,1,2},∁RB={x|$\frac{x-1}{x+2}$≥0},则A∩B=( )
| A. | {-1,0,1} | B. | {-1,0} | C. | {-2,-1,0} | D. | {0,1,2} |
5.已知a=-2${\;}^{1-lo{g}_{2}3}$,b=1-log23,c=cos$\frac{5π}{6}$,则a,b,c的大小关系是( )
| A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | b<c<a |
10.设等差数列{an}的公差为d,d≠0,若{an}的前10项之和大于其前21项之和,则( )
| A. | d<0 | B. | d>0 | C. | a16<0 | D. | a16>0 |