ÌâÄ¿ÄÚÈÝ

15£®ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÒ»Ìõ½¥½üÏßÓëxÖáËù³ÉµÄ¼Ð½ÇΪ30¡ã£¬ÇÒË«ÇúÏߵĽ¹¾àΪ4$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèF1£¬F2·Ö±ðΪÍÖÔ²CµÄ×ó£¬ÓÒ½¹µã£¬¹ýF2×÷Ö±Ïßl£¨ÓëxÖá²»ÖØºÏ£©½»ÓÚÍÖÔ²ÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄÖеãΪE£¬¼ÇÖ±ÏßF1EµÄбÂÊΪk£¬ÇókµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉË«ÇúÏߵĽ¥½üÏß·½³Ì¼°Ð±Âʹ«Ê½£¬¼´¿ÉÇóµÃa2=3b2£¬c=2$\sqrt{2}$£¬¼´a2+b2=8£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±ÏßABµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÇóµÃбÂÊØ­kØ­ÓÃt±íʾ£¬ÀûÓûù±¾²»µÈʽ¼´¿ÉÇóµÃkµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÒ»Ìõ½¥½üÏßÓëxÖáËù³ÉµÄ¼Ð½ÇΪ30¡ã£¬Ôò$\frac{b}{a}$=tan30¡ã=$\frac{\sqrt{3}}{3}$£¬¼´a2=3b2£¬
ÓÉ2c=4$\sqrt{2}$£®c=2$\sqrt{2}$£¬Ôòa2+b2=8£¬
½âµÃ£ºa2=8£¬b2=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºF2£¨2£¬0£©£¬Ö±ÏßABµÄ·½³Ì£ºx=ty+2£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{x=ty+2}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨t2+3£©y2+4ty-2=0£¬
y1+y2=-$\frac{4t}{{t}^{2}+3}$£¬x1+x2=$\frac{12}{{t}^{2}+3}$£¬
ÔòE£¨$\frac{6}{{t}^{2}+3}$£¬-$\frac{2t}{{t}^{2}+3}$£©£¬
ÓÉF1£¨-2£¬0£©£¬ÔòÖ±ÏßF1EµÄбÂÊk=$\frac{\frac{2t}{{t}^{2}+3}}{-2-\frac{6}{{t}^{2}+3}}$=-$\frac{t}{{t}^{2}+6}$£¬
¢Ùµ±t=0ʱ£¬k=0£¬
¢Úµ±t¡Ù0ʱ£¬Ø­kØ­=$\frac{Ø­tØ­}{Ø­t{Ø­}^{2}+6}$=$\frac{1}{Ø­tØ­+\frac{6}{Ø­tØ­}}$¡Ü$\frac{1}{2\sqrt{6}}$£¬
¼´Ø­kØ­¡Ê£¨0£¬$\frac{\sqrt{6}}{12}$]£¬
¡àkµÄȡֵ·¶Î§[-$\frac{\sqrt{6}}{12}$£¬$\frac{\sqrt{6}}{12}$]£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½¼°»ù±¾²»µÈʽµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø