题目内容
6.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$,则f[f($\frac{5}{2}$)]=( )| A. | -$\frac{1}{2}$ | B. | -1 | C. | -5 | D. | $\frac{1}{2}$ |
分析 利用分段函数的性质,先求出f($\frac{5}{2}$),再求f[f($\frac{5}{2}$)]的值.
解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$,
∴f($\frac{5}{2}$)=$lo{g}_{2}(\frac{5}{2}-1)$=$lo{g}_{2}\frac{3}{2}$,
∴f[f($\frac{5}{2}$)]=f($lo{g}_{2}\frac{3}{2}$)=${2}^{lo{g}_{2}\frac{3}{2}}$-2=$\frac{3}{2}-2=-\frac{1}{2}$.
故选:A.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质和对数性质的合理运用.
练习册系列答案
相关题目
1.已知$\overrightarrow{a}$=(1,sinα),$\overrightarrow{b}$=(cos2α,2sinα-1),α∈($\frac{π}{2}$,π).若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{5}$,则tan(α+$\frac{π}{4}$)的值为( )
| A. | $\frac{2}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{7}$ | D. | -$\frac{1}{7}$ |
11.设非零向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则θ∈($\frac{π}{2}$,π)是$\overrightarrow{a}$•$\overrightarrow{b}$<0的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
18.如图,在复平面内,复数z1和z2对应的点分别是A和B,则$\frac{{z}_{2}}{{z}_{1}}$=( )

| A. | $\frac{1}{5}$+$\frac{2}{5}$i | B. | $\frac{2}{5}$+$\frac{1}{5}$i | C. | -$\frac{1}{5}$-$\frac{2}{5}$i | D. | -$\frac{2}{5}$-$\frac{1}{5}$i |