题目内容
设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3n,n∈N*.
(1)记bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,n∈N*,求a的取值范围.
解 (1)依题意,Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n,
由此得Sn+1-3n+1=2(Sn-3n),即bn+1=2bn,
∴数列{bn}是首项b1=a-3,公比为2的等比数列.
因此,所求通项公式为bn=Sn-3n=(a-3)×2n-1,n∈N*.
(2)由(1)知,Sn=3n+(a-3)×2n-1,n∈N*,
于是,当n≥2时,
an=Sn-Sn-1=3n+(a-3)×2n-1-3n-1-(a-3)×2n-2=2×3n-1+(a-3)2n-2,
an+1-an=4×3n-1+(a-3)×2n-2
又a2=a1+3>a1,
综上,所求的a的取值范围是[-9,+∞).
练习册系列答案
相关题目