题目内容
13.若函数f(x)=-1+logn(x+1)经过的定点F(与n无关)恰为抛物线y=ax2的焦点,则点F的坐标是(0,-1); a=-$\frac{1}{4}$.分析 求出函数经过的定点坐标,即可定点抛物线的焦点坐标,然后求解a即可.
解答 解:函数f(x)=-1+logn(x+1)经过的定点F(0,-1),
抛物线y=ax2的焦点,则点F的坐标是(0,-1).
可得$\frac{1}{4a}=-1$,解得a=-$\frac{1}{4}$.
故答案为:(0,-1);-$\frac{1}{4}$.
点评 本题考查抛物线的简单性质的应用,考查计算能力.
练习册系列答案
相关题目
1.设p:0<x<5,q:-5<x-2<5,那么p是q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
5.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如表的统计资料:
若由资料可知y对x呈线性相关关系,试求:
(1)线性回归直线方程;
(2)根据回归直线方程,估计使用年限为20年时,维修费用是多少?
回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的系数为:$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{b}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$.
| 使用年限x(年) | 2 | 3 | 4 | 5 | 6 |
| 维修费用y(万元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)线性回归直线方程;
(2)根据回归直线方程,估计使用年限为20年时,维修费用是多少?
回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$的系数为:$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{b}=\overline{y}-\stackrel{∧}{b}\overline{x}}\end{array}\right.$.