题目内容
12.随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司M的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.(Ⅰ)由折线图可以看出,可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系.求y关于x的线性回归方程,并预测M公司2017年4月份的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的A、B两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
报废年限 车型 | 1年 | 2年 | 3年 | 4年 | 总计 |
| A | 20 | 35 | 35 | 10 | 100 |
| B | 10 | 30 | 40 | 20 | 100 |
参考数据:,$\sum_{i=1}^6{({x_i}-\overline x)({y_i}}-\overline y)=35$,$\sum_{i=1}^6{{{({x_i}-\overline x)}^2}}$=17.5.
参考公式:
回归直线方程为$\hat y=\hat bx+\hat a$其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{t}$.
分析 (Ⅰ)求出回归系数,可得回归方程,即可得出结论;
(Ⅱ)分别计算相应的数学期望,即可得出结论.
解答 解:(Ⅰ)由题意,$\overline{x}$=3.5,$\overline{y}$=16,$\widehat{b}$=$\frac{35}{17.5}$=2,$\widehat{a}$=$\overline{y}$-$\widehat{b}$•$\overline{x}$=16-2×3.5=9,
∴$\widehat{y}$=2x+9,
x=7时,$\widehat{y}$=2×7+9=23,即预测M公司2017年4月份(即x=7时)的市场占有率为23%;
(Ⅱ)由频率估计概率,每辆A款车可使用1年,2年,3年、4年的概率分别为0.2,0.35,0.35,0.1,
∴每辆A款车的利润数学期望为(500-1000)×0.2+(1000-1000)×0.35+(1500-1000)×0.35+(2000-1000)×0.1=175元;
每辆B款车可使用1年,2年,3年、4年的概率分别为0.1,0.3,0.4,0.2,
∴每辆B款车的利润数学期望为(500-1200)×0.1+(1000-1200)×0.3+(1500-1200)×0.4+(2000-1200)×0.2=150元;
∵175>150,
∴应该采购A款车.
点评 本题考查数学知识在实际生活中的应用,考查学生的阅读能力,对数据的处理能力,属于中档题.
练习册系列答案
相关题目
2.
《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=$\frac{1}{2}×$(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围城,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角$\frac{2π}{3}$,半径为6米的弧田,按照上述经验公式计算所得弧田面积约是($\sqrt{3}≈1.73$)( )
| A. | 16平方米 | B. | 18平方米 | C. | 20平方米 | D. | 25平方米 |
4.${∫}_{0}^{π}$cos$\frac{x}{2}$dx的值是( )
| A. | 2 | B. | 1 | C. | 4 | D. | 5 |